My Visual Journey

At the Department of Computational Psychology Carolin Brunn

From CS to Psychology

- First Insights
- Visual System
- MLDS Analysis
- Crispening Effect
- Bachelor Thesis

First Insights

- Application of computer graphics in psychology
- Importance of right question and stimuli

The Visual System

- Contrast, lightness
- Perception is mainly based on

reflectance and not on

illuminance

MLDS Analysis

- Method of triads
- d = (x1 x2) (x2 x3) + e

First Insights | Visual System | MLDS Analysis | Crispening Effect | Bachelor Thesis

MLDS Analysis

sub5, mlds, plain

First Insights | Visual System | **MLDS Analysis** | Crispening Effect | Bachelor Thesis

The Crispening Effect (CE)

- Lightness perception influenced by background
- Equally spaced luminance values are not perceived as equally spaced in lightness space

The CE in Previous Work

First Insights | Visual System | MLDS Analysis | **Crispening Effect** | Bachelor Thesis

Matching vs MLDS Procedure

Matching procedure

MLDS procedure

The Crispening Effect: An Artifact of a Method or a Feature of the Visual System?

Approach

- Reanalysis of the data of Aguilar & Maertens (2020) with regard to the occurence of the Crispening Effect (CE)
- Simulation of an MLDS experiments with different spacings of the samples in luminance space

Simulation

Ground truth functions with (■) &

without(--) CE as perceptual

scales of "observers"

• With CE

• Without CE

Simulation

- Simulation of (a)symmetric matching
- Simulation of MLDS with different spacings

•
$$d = (x1 - x2) - (x2 - x3) + e$$

Simulation of an MLDS Experiment

• "Perceptual" scales

Simulation of an MLDS Experiment

• Slope

Reanalysis of Previous Work

- Re-plot data and analyze slope & discriminability of the data
- Expectation: occurrence of the CE in data measured with

homogeneous background (Ekroll et al.)

Re-analysis of MLDS data

transparency: none

First Insights | Visual System | MLDS Analysis | Crispening Effect | **Bachelor Thesis: Reanalysis**

Analysis of MDLS Slope

Conclusion

- Feature but not for all observers
- Possible indicator: slope + discriminability measure
- Appropriate spacings and metrics important to really qualify CE

Open Questions

- Possible time component
- Influence of 3D-component in stimuli
- More sophisticated metrics needed

Center-surround stimuli

Variegated checkerboard

x3

Open Questions

- Possible time component
- Influence of 3D-component in stimuli
- More sophisticated metrics needed

My Conclusion

- It's not always 1 or 0
- Importance of the right questions
- New way of thinking

Thank you!

Simulation

Simulation of Asymmetric Matching

- Recovers the CE
- Indication of valid simulation method

Simulation of Asymmetric Matching

• Scales do NOT change dependent on the match luminance

Simulation of Symmetric Matching

- Comparison between homogeneous backgrounds with different lightness looks similar to Takasaki's results
- Scales depend on the match's background luminance!

Simulation: Model Identification

- Similarity between resulting scales and ground truth functions
 - 10 luminance values (x_i)

>10 average perc. scale values (over 100 simulation runs) (p_i) >10 f(x_i) based on ground truth function at x_i (g_i)

• sum_{$$\Delta$$} = $\sum (\Delta_i)$ where $\Delta_i = |p_i - g_i|$ and i = {1, ..., 10}

Simulation: Discriminability

- Ground truth functions can be visually discriminated
- Average distance between the data points of the 2 scales
 - 10 luminance values $(x_i) \rightarrow 10$ average perc. scale values for each scale $(p_i \& q_i)$

•
$$avg_d = \frac{\sum d_i}{100}$$
, with j = {1, ..., 100} and
 $d_j = \sum (\Delta_i)$, with $\Delta_i = |p_i - q_i|$ and i = {1, ..., 10}

Reanalysis: MLDS data - plain

Reanalysis: MLDS slope - plain

Reanalysis: MLDS data - dark

Reanalysis: MLDS slope - dark

Reanalysis: MLDS data - light

Reanalysis: MLDS slope - light

Reanalysis: MLCM data - plain

36

Reanalysis: MLCM slope - plain

Reanalysis: Asymmetric Matching- plain

Reanalysis: Asym. M. Slope- plain

Reanalysis: Asymmetric Matching- dark

Reanalysis: Asym. M. Slope- dark

Reanalysis: Asymmetric Matching-light

Reanalysis: Asym. M. Slope-light

