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Abstract

Previous work by Aguilar and Maertens (2022) suggested that the human observer judges

perceived transparency and perceived contrast with the help of a common mechanism,

that can be computationally captured as a logarithmic contrast. In their experiments, hu-

man observers compared the perceived transparency or the perceived contrast of several

stimuli. The stimuli showed variegated checkerboards partially covered by transparent

overlays, that varied in transmittance and luminance. The perceptual di↵erence scales of

these experiments were predicted well by contrast metrics based on the logarithm of the

Michelson or Whittle contrast. However, their experiments only included stimuli with a

minimum luminance of 60 cd/m2, thereby excluding the range in which logarithmic con-

trast metrics converge on one point. In this thesis, I used the same experimental method

and procedure as Aguilar and Maertens (2022) to investigate the luminance range below

60 cd/m2 and could reveal a systematic deviation in the predictions of the logarithmic

contrast metrics. I used maximum likelihood conjoint measurement (MLCM) to gen-

erate perceptual scales for each observer and compared them with the contrast metrics

evaluated in the previous study. Contrary to the predictions of the logarithmic contrast

metrics, the perceptual scales do not appear to converge towards a single point as the

luminance approaches 0 cd/m2.
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Zusammenfassung

Die vorangehende Arbeit von Aguilar und Maertens (2022) deutet an, dass der mensch-

liche Beobachter wahrgenommene Transparenz und wahrgenommenen Kontrast mit der

Hilfe eines gemeinsamen Mechanismus beurteilt, welcher rechnerisch als logarithmischer

Kontrast erfasst werden kann. In ihren Experimenten verglichen menschliche Beobachter

die wahrgenommene Transparenz und den wahrgenommenen Kontrast vieler Stimuli. Die

Stimuli stellten vielfarbige Schachbretter dar, welche jeweils teilweise von einer transpa-

renten Ebene überdeckt wurden, die sich in Durchlässigkeit und Luminanz unterschied.

Die Wahrnehmungsdi↵erenzskalen dieser Experimente wurden gut von Kontrastmetriken

vorhergesagt, die auf dem Logarithmus des Michelson- oder Whittle-Kontrast basierten.

Jedoch wurden nur Stimuli verwendet, in denen die transparente Ebene mindestens eine

Luminanz von 60 cd/m2 hatte, wodurch der Luminanzbereich, in dem die logarithmischen

Kontrastmetriken auf einen Punkt führen, ausgeschlossen wurde. In dieser Abschlussar-

beit habe ich die gleiche experimentelle Methode und Prozedur wie Aguilar und Maertens

(2022) verwendet um den Luminanzbereich unter 60 cd/m2 zu untersuchen und konnte

eine systematische Abweichung in den Vorhersagen der logarithmischen Kontrastmetriken

aufzeigen. Ich verwendete Maximum Likelihood Conjoint Measurement (MLCM) um für

jeden Beobachter Wahrnehmungsskalen zu generieren und habe diese mit Kontrastmetri-

ken, die in der vorangegangenen Arbeit evaluiert wurden, verglichen. Im Gegensatz zu den

Vorhersagen der logarithmischen Kontrastmetriken scheinen die Wahrnehmungsskalen für

eine Luminanz gegen 0 cd/m2 sich nicht an einem Punkt zu sammeln.
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1 Introduction

In the context of vision research, transparency has two essential viewpoints: transparency

can be examined as a physical attribute or as a perceptional phenomenon. In the forth-

coming sections, I will outline these perspectives and discuss the episcotister model, a

well-known physical model for transparency by Metelli (1970, 1985). As the episcotister

model shares similar attributes with the stimuli used in the experiments of this thesis, I

employ it to introduce the independent variables. Subsequently, I highlight discoveries of

previous studies as well as how they are related to the objective of this thesis.

1.1 Physical Transparency

Robilotto and Zaidi (2004) define physical transparency as a filter medium property de-

rived from the reflectivity and inner transmittance of the medium. Reflectivity is a phys-

ical property quantified as the ratio of radiant flux that is reflected on the front and back

surfaces of a filter medium. The sum of all reflected radiant flux determines the reflectance

of the medium. The inner transmittance of the filter medium is a property defining the

ratio of radiant flux entering the medium’s front surface and reaching the back surface.

Correspondingly, the sum of all transmitted radiant flux determines the transmittance of

the medium. Figure 1.1 illustrates the path of radiant flux as it passes through a filter

medium, but is also reflected on all surfaces.
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1 Introduction

Figure 1.1: This figure is based on an illustration by Robilotto and Zaidi (2004) and shows the
path of radiant flux as it passes through a transparent filter medium. When the
flux initially reaches the front surface of the medium a part of the flux is reflected
at the surface and another part passes through the medium. Subsequently, the
transmitted flux reflects from the opaque surface and returns to the back surface
of the filter. It then undergoes a series of reflections between the filter’s back
surface and the opaque surface, occasionally passing through the medium when it
reaches the back surface.

1.2 Perceived Transparency

Many researchers in the field of vision science studied the phenomenon of perceived trans-

parency to address the fundamental question of how the human visual system decomposes

the sensory input — a two-dimensional array of light intensities — into separate sources

for the corresponding image data. In the case of transparency perception, the human

observer seemingly sees one surface through another while perceiving reflected light from

both surfaces separately. Regardless of the two-dimensional nature of the sensory input,

the perceptual process allows the observer to perceive meaningful information about a

three-dimensional environment (Aguilar & Maertens, 2022; Anderson et al., 2006; Singh

& Anderson, 2002). However, Metelli (1970, 1974, 1985) has shown that perceived trans-

parency does not rely on physical transparency. Instead, a stimulus must meet figural

and chromatic conditions to be perceived as transparent. Figure 1.2 illustrates the e↵ect

of these conditions by showing three arrangements of the same four opaque geometric

2



1 Introduction

shapes. One of the arrangements meets all conditions while the other two violate one.

The reflectances of the left and right rectangles are labeled as a and b, and the reflectances

of the left and right semicircles are labeled as p and q. With these labeled shapes, we can

establish the definitions of two chromatic conditions.

1. a > b ) p > q or a < b ) p < q

If the left rectangle is brighter (or darker) than the right, then so is the left semicircle

brighter (or darker) than the right one.

2. |p� q| < |a� b|

The di↵erence between the reflectances of the semicircles has to be smaller than the

di↵erence between the reflectances of the rectangles.

(a) (b) (c)

Figure 1.2: Three arrangements of the same four opaque geometric shapes based on the work
of Metelli (1985). The reflectances of the left and right rectangles are labeled as
a and b, and the reflectances of the left and right semicircles are labeled as p and
q. (a) illustrates the case where the arrangement meets the figural and chromatic
conditions of Metelli. (b) uses the same figural constellation as (a) but with the
reflectances of the semicircles exchanged. This is an example where chromatic
conditions are not fulfilled (a > b but p < q). (c) displays an example of a
breach of figural conditions: the shift of the semicircles causes the boundaries of
the transparent layer to be aligned with the contour of the rectangles.
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1 Introduction

1.3 Metelli’s Episcotister Model

Metelli (1970) introduced a physical model for transparency known as the episcotister

model. The episcotister is a rotating opaque disk with a cutout sector positioned in front

of a background as illustrated in Figure 1.3. If the rotation speed is fast enough, the disk

will appear as a transparent full circle similar to Figure 1.2a. The luminance reflected from

the disk’s surface is denoted as ⌧ . The size of the cutout sector is determined by ↵ 2 [0; 1],

which represents the transmittance of the spinning disk. Aguilar and Maertens (2022)

demonstrated that the degree of transparency perception does not solely depend on the

transmittance ↵, but also on the luminance ⌧ (see Figure 1.3). Talbot’s law can be used

to predict the luminance of the transparent circle based on the background’s luminance,

the luminance ⌧ of the disk when opaque, and the transmittance ↵. For example, the

luminance of q in Figure 1.2a can be calculated as follows:

q = ⌧ · (1� ↵) + b · ↵ (1.1)

Incorporating the ideas of this model, I use various values for the transmittance ↵ and

the luminance ⌧ to generate stimuli with di↵erent transparent layers.

Figure 1.3: An illustration by Aguilar and Maertens (2022) showing two episcotisters with an
equal transmittance ↵ = 0.25 and distinct reflectances for ⌧ . The left episcotister
has a dark surface and the right episcotister has a bright surface. When the epis-
cotisters rotate at high speed, they appear as transparent full circles, but observers
perceive the dark episcotister as more transparent.

4



1 Introduction

1.4 Related Work

So far, no model can accurately predict the perceived transparency of a given image, but

prior research suggests that the perception of transparency closely corresponds to the per-

ception of contrast (Robilotto & Zaidi, 2004). Aguilar and Maertens (2022) investigated

this matter by conducting two experiments involving human observers to identify their

decision patterns for transparency and contrast perception using a perceptual di↵erence

scale. They then compared the accuracy of several contrast metrics in predicting the

observers’ perceptual scales.

In the first experiment, observers were shown two identical variegated checkerboards that

were partially covered by distinct transparent layers (see Figure 1.4a). Every trial em-

ployed a random checkerboard pattern and the transparent layers varied in reflectance

and transmittance. When opaque, the transparent layer’s luminance had one of nine

values ranging from 60 to 360 cd/m2. In each trial, the observers judged which of the

displayed stimuli appeared more transparent, hence comparing all combinations of the

transparent layer’s reflectance transmittance with each other. The second experiment

utilized the same procedure, but only the intersections of the transparent layers and the

checkerboard’s top surfaces were visible, thereby removing cues to depth and transparency

from the stimuli (see Figure 1.4b). Here, the observers had to decide which of the stimuli

had a higher contrast.

(a) (b)

Figure 1.4: Example trials from the experiments of Aguilar and Maertens (2022). (a) showing
a trial from the first experiment. Observers had to decide which stimulus appeared
more transparent. (b) displaying the corresponding trial of the second experiment.
The same checkerboard was used for the same comparison, but visual cues to depth
and transparency were removed. The observers judged which of the stimuli had a
higher contrast.
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1 Introduction

In the following, I will introduce the contrast metrics used by Aguilar and Maertens (2022).

Let li with i 2 {1, 2, ..., n} represent one of the luminances in the transparent region, l

denote their arithmetic mean, and n denote the total number of distinct luminances in

that region.

• The root mean square (RMS) contrast is defined as the standard deviation of lumi-

nance values relative to the global mean. This metric predicts perceived contrast to

depend solely on the transmittance of the transparent layer and not on its luminance

when it is opaque.

RMS =

vuut 1

n

nX

i=1

(li � l)2 (1.2)

• An alternative formulation of the root mean square contrast in which it is normalized

relative to the mean luminance l. Due to this normalization, the model’s prediction

is also a↵ected by the transparent layer’s luminance when it is opaque.

RMSnorm =
RMS

l̂
=

r
1

n

nP
i=1

(li � l)2

l
(1.3)

• The root mean square of the logarithm of the luminances. This alters the predictions

of the root mean square similarly to its normalized version.

SDLG =

vuut 1

n

nX

i=1

(log(li)� log(l))2 (1.4)

• Singh and Anderson (2002) showed that for simple stimuli, a ratio of contrasts

e↵ectively predicts perceived transparency. This metric relies only on the maximum

and minimum values of the transparent region and the same region in plain view,

whereas the other listed metrics use all luminance values in the transparent region.

↵C =
CTRANSP

CPLAIN
, with C =

lmax � lmin

lmax + lmin
(1.5)
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1 Introduction

The following metrics are space averages, and therefore, all cases where i = j are excluded

from the calculation.

• The space-averaged Michelson contrast

SAM =
1

n2

nX

i=1

nX

j=1

����
li � lj
li + lj

���� (1.6)

• The space-averaged logarithm of the Michelson contrast (SAMLG). This metric

accurately predicted the perceptual scales from the experiments of Aguilar and

Maertens (2022) with Pearson’s correlation coe�cient r of 0.99 in the first experi-

ment and 0.98 in the second.

SAMLG =
1

n2

nX

i=1

nX

j=1

log

����
li � lj
li + lj

���� (1.7)

• The space-averaged Whittle contrast.

SAW =
1

n2

nX

i=1

nX

j=1

����
li � lj

min(li, lj)

���� (1.8)

• The space-averaged logarithm of the Whittle contrast (SAWLG). This metric, too,

predicted the perceptual scales accurately with Pearson’s correlation coe�cient r of

0.99 in both experiments.

SAWLG =
1

n2

nX

i=1

nX

j=1

log

����
li � lj

min(li, lj)

���� (1.9)

Figure 1.5 presents a graphical representation of these metrics’ predictions based on the

transmittance (↵) of the transparent layer and its luminance when it is opaque (⌧). Given

↵, ⌧ , and the luminances of the background surface, the luminance values in the trans-

parent region can be calculated using Talbot’s law (see Equation 1.1).

7



1 Introduction

1.5 Research Question

As demonstrated by Aguilar and Maertens (2022), the root mean square does not accu-

rately predict transparency perception, as the model suggests that the degree of perceived

transparency is una↵ected by the luminance ⌧ of the transparent layer. However, the other

contrast metrics converge to a single point as ⌧ approaches 0 cd/m2, which means that

for the limiting case of ⌧ = 0, transparency or contrast is perceived as equal for all trans-

mittances ↵ (compare Figure 1.5). This is at odds with the intuitive assumption that for

any luminance ⌧ the stimulus with the higher transmittance ↵ will be perceived as more

transparent.

Figure 1.5: A graphical representation of the equations 1.2 to 1.9. The x-axis corresponds to
the luminance of the transparent layer when it is opaque. The y-axis represents
the perceptual scale which, in this case, simply refers to the range of the metric.
The graphs employ di↵erent colors to distinguish the di↵erent transmittances ↵.
I calculated all luminances required for these metrics using Talbot’s law (Equa-
tion 1.1) and the 13 possible luminance values of the checkerboard checks.

The contrast metrics based on the logarithm of the Whittle and Michelson contrast (see

equations 1.9 and 1.7) achieved high accuracy in predicting the perceptual scales of the

experiments conducted by Aguilar and Maertens (2022), but the lowest luminance value

8



1 Introduction

for ⌧ was 60 cd/m2. Hence, the question of whether these contrast metrics can predict

the perceived transparency for low luminances remains open and serves as the objective

of this thesis. I investigate if human observers can distinguish di↵erences in transparency

as accurately in the low luminance range as in the range above 60 cd/m2. From this

objective, I derive the following hypothesis:

If the contrast metrics predict perceived transparency as accurately for low luminances as

for high luminances, then the pattern of the perceptual scales must align with the pattern

of the predictions.

9



2 Method

I use the same experimental method, procedure, and type of stimuli as Aguilar and

Maertens (2022) but employ lower values for the luminance ⌧ of the transparent layer. In

the following sections, I briefly introduce the human observers. Next, I will present the

stimuli and describe the selection process. I will then list the equipment used and explain

the design of the experiments. Finally, I introduce the method of maximum likelihood

conjoint measurement, which I employed for scale estimation (Knoblauch & Maloney,

2012).

2.1 Observer

Three observers participated in the experiments. GA is one of the authors from the work

of Aguilar and Maertens (2022), SN is a volunteer who served as a naive observer, and

SC is me. The observers received instructions on how to interact with the gear used in

the experiments and a brief explanation of the given tasks.

2.2 Stimuli

I generated variegated checkerboards and cut-out stimuli based on the work of Aguilar

and Maertens (2022).

10



2 Method

2.2.1 Variegated Checkerboards

I used povray (Persistence of Vision Raytracer Pty. Ltd., Williamstown, Victoria, Aus-

tralia, 2004) to generate square variegated checkerboards with 64 checks. Each check had

one out of 13 possible reflectances with a luminance ranging from 12 to 412 cd/m2. I

randomized the assignment of reflectances to checks, however, two adjacent checks could

not have the same reflectance. The configuration of the camera perspective and light

source remained constant and created a 3D impression. I placed a transparent rectangle

in front of the checkerboard, partially covering it. The appearance of the transparent

rectangle was determined by the transmittance ↵ and luminance ⌧ . The background was

consistent for all stimuli with a luminance of 133 cd/m2 (see Figure 2.1). I modified the

Figure 2.1: An example checkerboard pattern with all transparent layers used in the experi-
ment. The stimuli are arranged based on the transmittance ↵ (rows) and luminance
⌧ (columns) of the transparent rectangle. The rows are sorted from top to bottom
with the ↵values 0.4, 0.2, 0.1, 0.05. The columns are sorted from left to right with
⌧ values 2, 8, 16, 41 cd/m2.

output of the rendering process to be 16-bit PNG files, departing from the 8-bit PNG

files employed by Aguilar and Maertens (2022). This adjustment successfully addressed

11



2 Method

an issue where extra edges appeared on some of the checks due to povray’s challenges in

rendering dark transparent overlays.

2.2.2 Cut-Out Stimuli

For the stimuli of the second experiment, I reused the variegated checkerboard from the

first experiment. I applied a mask that removed depth and transparency cues displaying

only the intersection of the checkerboard’s top surface and the transparent rectangle. The

background luminance remained unchanged (see Figure 2.2).

Figure 2.2: The same stimuli as in Figure 2.1, but with a cut-out mask applied to show only
the intersection of the checkerboard’s top surface and the transparent rectangle.

2.2.3 Stimuli Selection Process

The transmittance values used to generate the stimuli of my experiments (?? and ??)

were consistent with those employed by Aguilar and Maertens (2022): 0.05, 0.1, 0.2, or

0.4. The relevant range of the luminance ⌧ spans from 0 to 60 cd/m2. To select adequate

12



2 Method

luminances, I generated multiple sets of stimuli. I compared these sets using a custom

exploration tool, which allowed me to navigate through them, adjusting the number of

⌧ values, the spacing of the values, and the maximum luminance. Figure 2.3 provides

an example view of this mode where the transmittance ↵ was set to 0, displaying the

transparent rectangle in an opaque state. The transmittance displayed in a given view

could be increased or decreased, and a cut-out mask could be applied, too. As a result

of this procedure, I selected the following four values the luminance ⌧ : 2, 8, 16, and 41

cd/m2. 2 cd/m2 is the lowest luminance that could be displayed on the monitor for the

experiments. The values in between were chosen due to the perceptually equal spacing in

lightness.

Figure 2.3: An example screen of the exploration mode. A set of stimuli with a fixed trans-
mittance ↵ was presented at once. Pressing the up or down button changed the
transmittance and eventually the stimuli type (variegated checkerboards or cut-
out stimuli). Pressing the left or right button changed the set of stimuli. The sets
di↵ered in the number of values for ⌧ (4-9 values), the spacing of the values, and
the highest luminance.

2.3 Apparatus

The experiments were conducted in the same facility as the experiments of Aguilar and

Maertens (2022). The observers were watching a screen from a distance of 130 cm inside a

dark experimental cabin. The following is a list of the equipment used in the experiments:

13



2 Method

• 21-in. Siemens SMM2106LS monitor (400 × 300 mm, 1,024 × 768 px, 130 Hz) for

stimuli presentation.

• Minolta LS-100 photometer (Konica Minolta, Tokyo, Japan) for the calibration of

the monitor and measurement of luminances.

• DataPixx toolbox (Vpixx Technologies, Inc., Saint- Bruno, QC, Canada) for control

of the presentation.

• ResponsePixx button-box (VPixxTechnologies, Inc.) for response registration.

I switched the monitor on at least 30 minutes before each session, ensuring it had enough

time for its auto-calibration. The authors of the previous experiments provided a table

for the linearization of the monitor’s luminance response, based on the measurement of

the monitor’s gamma function. The ⌧ values mentioned in subsection 2.2.3 were directly

measured on the monitor screen. However, the estimated luminance values were slightly

di↵erent since the luminance that can be produced is restricted by the monitor’s lumi-

nance response. Additionally, since povray uses a particular unit to specify reflectance

values, I applied linear regression to calculate the luminance estimations. Table 2.1 lists

the mapping of the povray input values, the estimated luminances, and the measured

luminances. For the presentation, I utilized custom software1 to implement the specific

components and Python scripts needed for my experiments.

Povray reflectance
value

Estimated luminance
(cd/m2)

Measured luminance
(cd/m2)

0 0 2

0.10554 5.43 8

0.28649 14.74 16

0.77766 40 41

Table 2.1: The input reflectance values for povray (left column), the estimated luminance val-
ues to which the povray values are mapped (middle column), and the luminances
measured on the experiment monitor screen (right column).

1HRL: High Resolution Luminance – a library used for the experiments’ implementation. http://gith
ub.com/computational-psychology/hrl
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2 Method

2.4 Design and Procedure

The purpose of the experiments was to estimate perceptual di↵erences for transparency

and contrast at low luminance settings of the transparent medium using maximum like-

lihood conjoint measurement (Knoblauch & Maloney, 2012) and paired comparisons. I

conducted a separate experiment for each type of stimulus. Both experiments had the

same procedure: In each trial, two stimuli were presented side by side, and the observer

had to select one stimulus based on the given task of the experiment. In Experiment

1, the task was to select the checkerboard in which the rectangle layer was perceived as

more transparent. In Experiment 2, the observer judged which cut-out stimulus had a

higher perceived contrast (compare Figure 1.4). There was no time limit for the trials.

I generated a new random checkerboard pattern for each trial. Hence, the checkerboard

patterns used by the stimuli of the same trial were identical. I also randomized the order

of the trials and the position of the stimuli (left or right). Pressing the left or right button

of the response box selected the corresponding left or right stimulus. Each experiment

comprised 120 unique comparisons, repeated 10 times in distinct blocks, totaling 2400

trials per observer. The trials and stimuli within the blocks previously described ran-

domization steps and assisted observers in tracking their progress. Observers were free to

take breaks whenever needed. I have scheduled around two to three one-hour sessions for

each observer. The order of the experiments was fixed, with observers first completing

Experiment 1 and then Experiment 2.

2.5 Scale Estimation With Maximum Likelihood Con-

joint Measurement

Using maximum likelihood conjoint measurement (MLCM) (Knoblauch &Maloney, 2012),

it is possible to estimate scales that assess the e↵ect of at least two physical dimensions on

perceptual di↵erences. In the experiments conducted in the scope of this thesis, the phys-

15



2 Method

ical dimensions are the luminance and transmittance of the transparent layer. The scale

represents the perceptual di↵erence in transparency (Experiment 1) or contrast (Experi-

ment 2). MLCM is a version of conjoint measurement that allows for non-deterministic

observer judgments. This means that decisions over the same parameter combination may

vary across multiple iterations. To calculate the perceptual scales for each observer and

experiment, I used the same implementation as Aguilar and Maertens (2022), available

for the R programming language. This implementation provides three conjoint measure-

ment models to fit the observer data (Knoblauch et al., 2022). Following the approach of

Aguilar and Maertens (2022), I used the full model with a positive convergence tolerance

✏ set to 0.0001 to control the fit.

16



3 Results

To provide a comprehensive view of the experiment results, I utilize two visualizations:

perceptual scales derived through MLCM and, as a complementary approach, heatmaps

for a closer visualization of the raw data. I begin with the presentation of the perceptual

scales for each observer and experiment (Figure 3.1), followed by the evaluation results

for all metrics (Table 3.1) and the comparison of the most accurate contrast metric with

the perceptual scales (Figure 3.2). Lastly, I illustrate certain and uncertain decisions of

the observers in heatmaps (Figure 3.3).

3.1 Perceptual Scales

The di↵erences in perceived transparency and contrast across the 16 combinations of

transmittance and luminance can be deduced from the perceptual scales in Figure 3.1.

The perceptual scales in Figure 3.1a reflect di↵erences in perceived transparency, while

scales in Figure 3.1b represent perceived contrast. All figures share the same x-axis,

depicting the luminance (⌧) of the transparent medium when it is opaque, spanning from

0 to 41 cd/m2. However, the scales on the y-axis di↵er among the observers, with the

maximum scale value inversely reflecting their decision noise levels (a higher maximum

indicates less decision noise). Distinct colors assigned to the data points correspond to

a specific transmittance ↵. Data points of the same ↵ are then connected to visually

depict perceptual scale patterns for each observer. Vertical lines positioned at each data

point denote error bars, which represent the 95% confidence intervals. Consistent with
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3 Results

prior studies (Aguilar & Maertens, 2022; Robilotto & Zaidi, 2004), the perceptual scales

indicate, that for each transmittance ↵, the stimuli with lower luminance ⌧ were perceived

as more transparent or richer in contrast than those with higher luminance. On the other

hand, stimuli with a higher transmittance ↵ were perceived as more transparent or richer

in contrast for each luminance ⌧ . Notably, The scales do not converge to a single point

as luminance approaches 0 cd/m2.

(a)

(b)

Figure 3.1: The perceptual scales of the observers. (a) Experiment 1 with perceived trans-
parency. (b) Experiment 2 with perceived contrast. The x-axis represents the
opaque luminance ⌧ of the transparent layer, colored lines indicate the transmit-
tance ↵, and vertical lines are 95% confidence intervals. Each figure includes 16
data points, representing di↵erent ⌧ and ↵combinations, used for the stimuli.
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3 Results

3.2 Contrast Metrics

Contrast
metric

Exp.
SSE

r avg.

Avg. Range

↵c 1 22.92 [6.25, 55.74] 0.94

2 12.97 [8.41, 19.11] 0.93

RMS 1 88.87 [14.97, 227.39] 0.79

2 65.46 [15.77, 102.79] 0.74

RMSnorm 1 23.71 [6.03, 58.7] 0.94

2 13.47 [8.74, 18.06] 0.93

SDLG 1 28.38 [5.63, 72.71] 0.94

2 17.11 [12.3, 25.04] 0.93

SAM 1 24.34 [5.85, 61.31] 0.94

2 14.02 [9.1, 16.65] 0.93

SAMLG 1 22.26 [8.06, 50.02] 0.93

2 12.63 [6.57, 22.85] 0.93

SAW 1 50.64 [8.95, 128.48] 0.88

2 33.16 [14.15, 54.82] 0.87

SAWLG 1 19.51 [5.9, 46.11] 0.95

2 10.98 [6.1, 18.36] 0.94

Table 3.1: Comparison between the predictions of the contrast metrics and the perceptual
scales, following the evaluation procedure from Aguilar and Maertens (2022). Aver-
ages of the sum of squared errors (SSE Avg.), the ranges of SSE (SSE Range), and
the average Pearson’s correlation coe�cients (r avg.) calculated across all observers
for each contrast metric and experiment.

I scaled the contrast metrics’ predictions (compare Figure 1.5) to match each observer’s

individual scale range employing linear transformation. Subsequently, I computed the

sum of squared errors and Pearson’s correlation coe�cient r between each prediction and

the respective observer’s perceptual scale. The averages of the sum of squared errors

and Pearson’s correlation coe�cient r, as well as the range of the sum of squared errors

across all observers, are listed in Table 3.1. None of the contrast metrics demonstrated a

significantly better fit over the others. While the contrast metric based on the logarithm
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3 Results

of the Whittle contrast (SAWLG) performed slightly better than the other metrics, it did

not yield a satisfactory fit (see Figure 3.2).

(a)

(b)

Figure 3.2: The perceptual scales of the observers (represented by dots with error bars) and the
predictions of SAWLG, individually scaled to match the range of the corresponding
perceptual scale. Similar to Figure 3.1, (a) corresponds to the first experiment and
(b) to the second.

3.3 Heatmaps

Alongside the perceptual scales, I used heatmaps to visualize observer responses, o↵ering a

representation that closely resembles raw data and emphasizing challenging comparisons

for the observers. Figure 3.3 displays heatmaps for observer SC. These heatmaps are

composed of colored boxes, with each box representing the relative frequency of selecting
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3 Results

Stimulus 1 based on its transmittance ↵ and luminance ⌧ , depicted on the y-axis, in

comparison to ↵ and ⌧ of Stimulus 2, which is represented on the x-axis. The level of

redness in each box corresponds to the observer’s uncertainty in their decision-making.

Observers less familiar with the stimuli had a higher occurrence of red boxes. Next to

the diagonal, black triangular patterns emerged, signifying that for consistent ⌧ values,

decisions leaned towards the stimulus with a higher ↵, aligning with the observations

detailed in section 3.1.

(a) (b)

Figure 3.3: Heatmaps of Experiment 1 (a) and 2 (b) for observer SC reflect judgments for each
comparison of transmittance ↵ and luminance ⌧ combination. Box values represent
the relative frequency of choosing Stimulus 1, with red boxes denoting challenging
comparisons. Heatmaps for all observers can be found in Appendix 1.
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4 Discussion

I examined whether human observers could distinguish stimuli when the luminance of

the transparent layer was low. Furthermore, I assessed the accuracy of several contrast

metrics in predicting the perceptual scales of observers for the tested luminance range.

In the subsequent sections, I will discuss my findings, establish connections with prior

research, and draw conclusions regarding the e↵ects observed across the tested luminance

values.

4.1 Relation to Previous Work

While the space-averaged contrast metrics based on the logarithm of Michelson or Whittle

(SAMLG, SAWLG) were found to be the most suitable for capturing perceptual scales

of the experiments by Aguilar and Maertens (2022), they did not yield similar results for

the perceptual scales of the experiments conducted for my thesis. The perceptual scale

patterns do not align with the predictions of the contrast metrics. It appears that, for the

tested values, a linear function may be a more suitable choice for approximating perceptual

scales compared to logarithmic functions. The contrast metric predictions based on the

logarithm of Whittle (SAWLG) exhibited the smallest average sum of squared errors.

However, they systematically deviated from the perceptual scales of all observers and

experiments. Specifically, the predictions were consistently below the data points with

a transmittance of ↵ = 0.4 and for luminance values below 8 cd/m2, the predictions’

slope increased, leading to inaccurate predictions for ↵ = 0.05 and ⌧ = 2 cd/m2 (see
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4 Discussion

Figure 3.2 for comparison). The evaluation reveals that the contrast metrics do not

e↵ectively capture perceived transparency or contrast for the tested values. Nonetheless,

the perceptual scale patterns in both experiments closely resemble each other, in line with

previous studies suggesting a shared mechanism for judging perceived transparency and

contrast (Aguilar & Maertens, 2022; Robilotto & Zaidi, 2004).

4.2 E↵ects of Low Luminances

Highlighted areas in Figure 4.1 represent comparisons in which both stimuli share the

same luminance ⌧ . In these instances, observers successfully di↵erentiated transparencies

and contrasts based on the transmittance ↵. The scales do not exhibit signs of converging

at a single point. In contrast to the converging predictions of the contrast metrics, the

patterns of the perceptual scales indicate that transparency perception for zero-reflectance

transparencies is not independent of the transmittance.

Figure 4.1: Perceptual scale and heatmap of observer SC in Experiment 1. Marked areas
demonstrate the observer’s ability to distinguish transparency based on transmit-
tance ↵, regardless of shared luminance ⌧ .

The perceptual scales indicate that as the luminance of the transparent medium increases,

the perception of both transparency and contrast decreases. Aguilar and Maertens (2022)

characterized this perceptual phenomenon as a trade-o↵ between the luminance and the
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4 Discussion

transmittance of the transparent medium. Some comparisons, where observers couldn’t

consistently select the same stimulus due to no perceived di↵erence in transparency or

contrast, often resembled instances of this e↵ect (as seen in the example provided in Figure

4.2).

Figure 4.2: Perceptual scale and heatmap of observer SC in Experiment 1. The highlighted
line represents a comparison where the observer did not perceive one stimulus as
more transparent than the other. This example pertains the comparison between
↵ = 0.2, ⌧ = 8 cd/m2 and ↵ = 0.4, ⌧ = 41 cd/m2.

I included another example for this trade-o↵ in Figure 4.3. In this case, observers tended

to perceive higher transparency for the stimulus with the darker transparent layer, despite

its lower transmittance. This confirms the persistence of this e↵ect for the values tested

within the scope of this thesis.

Figure 4.3: Example trial where a dark transparent layer was perceived as more transparent
despite a lower transmittance ↵. The left stimulus has the values ↵ = 0.05 and
⌧ = 2 cd/m2. The right stimulus has the values ↵ = 0.2 and ⌧ = 41 cd/m2.
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4 Discussion

The observers GA and SC commented on a somehow deviating appearance of dark trans-

parent layers (see summarized observer feedback in Appendix 2). While the perceived

transparency seems to appear hazy when the luminance is high, it becomes clearer as the

luminance decreases. Based on this assumption, the transparency may reach maximum

clarity as the luminance approaches 0 cd/m2.
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5 Conclusion

I employed the experimental methodology of Aguilar and Maertens (2022) to investi-

gate if observers can distinguish stimuli with low-luminance transparencies. Utilizing the

data from the experiments, I generated perceptual scales for perceived transparency and

contrast using MLCM. Despite predictions from several contrast metrics suggesting con-

vergence on a single point as luminance approaches 0 cd/m2, my findings indicate that

this is not the case. Observers consistently distinguished the transparency and contrast

of stimuli with the same luminance.

In conclusion, none of the tested contrast metrics provided accurate predictions within

the scope of this thesis. Additionally, I confirmed the significant impact of luminance on

perceived transparency and contrast, and observed similarities in the perceptual scales

between experiments, suggesting a common underlying mechanism for judging perceived

transparency and contrast.
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Appendix

1 Heatmaps
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Appendix

2 Observer Feedback Summary

Below, I list the key points summarizing the comments made by each observer after

completing the experiments.

GA:

• Dark transparent media appeared di↵erent as if some e↵ect was applied to the

stimuli. Nevertheless, tried to focus solely on the transparency of the displayed

stimuli.

• The experiments of this thesis were more challenging than those in the previous

study.

SC:

• The transparency in dark, transparent media appeared clearer.

• Used very dark or very bright checks to make decisions when uncertain.

• The second experiment was more challenging than the first experiment.

SN:

• Has frequently based the decision on hard edges, the brightness of checks, or the

color di↵erence of neighboring checks.

• Perceived the checkerboard to be positioned in front of the transparent layer for

some of the stimuli with the highest transmittance.
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