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fremde Hilfe und ausschließlich unter Verwendung der aufgeführten Quellen und Hilfsmittel angefertigt
habe.

I hereby declare that I have created this work completely on my own and used no other sources or
tools than the ones listed.

Berlin, November 27, 2022 Hendrik Schulze Bröring
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Abstract

Multiscale spatial filtering models predict human brightness perception of an image; oftentimes of a
brightness perception e↵ect (stimulus). The application of the models are computationally expensive
and slow. To increase their performance, one can decrease the pixel quantity of the stimulus it is
applied to. However, a decrease in pixel quantity (resolution) may change properties of the brightness
prediction. To quantify that change, image properties of the default brightness prediction are compared
to the same properties of predictions with di↵erent resolutions. To avoid idiosyncrasy, the brightness
prediction of seven types of stimuli and multiple resolutions are assessed. In fact, all the brightness
prediction properties that were analyzed, deviated from the default prediction. Even though, some
properties remained more stable than others, the exact change was dependent on the stimulus to which
the model was applied.
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Zusammenfassung

Multiscale spatial filter Modelle prognostizieren die menschliche Helligkeitswahrnehmung eines Bildes;
häufig handelt es sich bei dem Bild um einen Helligkeitse↵ekt (Stimulus). Die Anwendung der Modelle
ist rechenintensiv und langsam. Um ihre Leistung zu steigern, kann man die Pixelanzahl des Stimulus,
auf den sie angewendet werden, verringern. Eine Verringerung der Pixelanzahl (Auflösung) kann
jedoch die Eigenschaften der Helligkeitsvorhersage verändern. Um diese Veränderung zu quantifizieren,
werden die Bildeigenschaften der Standard-Helligkeitsvorhersage mit den gleichen Eigenschaften von
Vorhersagen mit unterschiedlichen Auflösungen verglichen. Um Idiosynkrasie zu vermeiden, wird die
Helligkeitsvorhersage von sieben Arten von Stimuli mit jeweils mehreren Auflösungen bewertet. Es
wurde gezeigt, dass sich mit veränderter Auflösung auch die Eigenschaften der Helligkeitsvorhersagen
veränderten. Obwohl einige Eigenschaften stabiler sind als andere, hängt die genaue Veränderung von
dem Stimulus ab, auf den das Modell angewendet wurde.
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1

Introduction

The brightness of surfaces in the visual environment is one of the properties detected by the human
visual perception apparatus [1]. It is well-known that the human brightness perception (psychological
intensity) is not only determined by the luminance (physical intensity) of a surface, i.e., the light waves
it reflects[2], [3]. In fact, an additional factor that influences the human perception of brightness is the
luminance of the surface’s surrounding. That circumstance can lead to visual e↵ects in which, e.g., two
patches with equal luminance are perceived with di↵erent brightness, depending on the surrounding
context. Such a brightness e↵ect can be observed for Whites’ E↵ect[4], which shows two gray patches
that are identical in luminance, but are perceived to have di↵erent brightness in di↵erent surrounding
contexts(Fig. 1.1a). Some of these brightness e↵ects are attributed to properties of retinal ganglion
cells of the human visual system: Simplified, these cells consist of an inner and an outer circle. The
cell is activated when light hits the inner circle and inhibited when light hits the outer circle[5].

(a) Brightness perception e↵ect, named White’s-E↵ect[4]. The lumi-

nance of the gray patches is identical. The patch that shares more

edges with the white stripes appears brighter.

(b) Response of the FLODOG model that predicts the human bright-

ness perception for White’s-E↵ect.

Figure 1.1

Spatial filtering models that aim to explain human brightness perception [1], [3], [6] have been the
subject of academic investigations for decades. These models can be applied to achromatic digital
images of brightness perception e↵ects (stimuli), such as White’s E↵ect, and respond with a prediction
of the human brightness perception of that stimulus (Fig. 3.4b). The models use Gaussian filters,
which mimic the aforementioned cell behavior [7]. The images to which these filters are applied, are
composed of a limited number of elements, also referred to as pixels [8, p.18]. Each pixel has a location
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and a numerical intensity value (also gray level value) between 0(black) and 255(white)[8], [9]. In that
sense, a digital image is represented as a matrix and each pixel represents a matrix element. The filters
are represented as matrices as well (Fig. 1.2). During the execution of a model, a filter is applied to
each pixel of the image and yields a new value by performing a mathematical operation on the pixel
value and its respective neighboring pixels [p.154][8].

Figure 1.2: Spatial filter that operates on the pixel and

its corresponding 3x3 neighborhood. Source: Gonzalez and

Woods [8, p.120]

A spatial filtering model consists of multiple fil-
ters. The FLODOG model, which has performed re-
markably well in predicting perceived brightness of an
image, consists of 42 Gaussian filters[1]. The many
filters and respective computations cause the model
to be very time-consuming. The larger an image, the
larger the matrix, the higher the pixel quantity, the
more computations have to be performed by the fil-
ter, the more time-consuming is the execution of the
model. However, the execution time can be signifi-
cantly reduced, by reducing the size, i.e. the amount
of pixels, of the image it is applied to. If the size in
pixels of White’s-E↵ect (Fig. 1.1a) is reduced by fac-
tor 4, the respective model execution time is reduced
from 31 seconds to 6.48 seconds (Fig.1.3). For users of the model who apply it to several stimuli,
multiple times a day, the time saved can be significant.

Figure 1.3: Execution time of the FLODOG model[1] applied to White’s-E↵ect. The model was applied to varying sizes of the

stimulus.

Reducing the size of the stimulus might cause a model response that di↵ers significantly from the
responses of the original stimulus. However, it is not very straightforward to predict which di↵erences
occur at which pixel sizes. From a purely visual perspective, model responses with di↵erent pixel sizes
can appear very similar and very di↵erent (Fig. 1.4). Even though, some model responses do not di↵er
visually, they must di↵er in some way if their pixel size di↵ers: If the amount of pixels is reduced, loss
of information is inevitable. Especially, when the change of model responses is invisible, it is crucial
to understand how the loss of information changes the model response. Anyone who works with these
models might rely on visual and non-visual properties of the model response to be stable. Moreover,
due to the many filtering and normalization steps, it is non-trivial to predict these changes in model
response before the model execution. Hence, if one wants to leverage smaller stimuli to speed up the
model execution time, it is critical to answer the question of how this reduction a↵ects the model
responses.
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Figure 1.4: Response of the FLODOG model applied to White’s-E↵ect with 1,048,576, 65,536 and 1,024 pixels. The model response

on the left and in the middle appear very similar despite their huge di↵erence in pixels. Despite their visual appearance, they must

be di↵erent in some way. The left image contains more pixels, and hence, more information than the image in the middle. The

right model response obviously di↵ers from the left and the middle one.

To analyze how reduced model responses di↵er from the original size, several brightness perception
e↵ects (stimuli) with respective size-di↵ering variations are created. The spatial filtering model will be
applied to the original size stimulus and the variations that di↵er in size. The original model response
will then be compared to the other model responses to evaluate the di↵erence. A di�culty for the
evaluation is that the model responses consist of di↵erent pixel sizes. If they were the same pixel size,
the comparison would be less di�cult. One could just subtract one model response from the other.
Well-established metrics that allow for comparison of digital images, e.g. the model responses, exist
for decades: For example, analyzing the distribution of intensity values is a well-established method to
compare image di↵erences and similarities[10]–[12]. The distribution of intensity values quantifies the
amount of pixels per intensity value, i.e. for each intensity value, it indicates the occurrence of that
value in the corresponding image of the model response. Another widely utilized method for digital
image comparison is the power spectrum[13], [14]. The power spectrum is a common way to analyze
the frequencies contained in an image and their amplitudes [15], i.e. it captures the magnitude and
rate of alternations between intensity values of the model response. Both methods, the intensity value
distribution and the power spectrum, are not only exceptionally well established, they complement each
other very well: The distribution is suitable for the analysis of non-spatial information. It captures
the quantity of di↵erent intensity values, irrespective of their location. The power spectrum, however,
assesses the alternations between pixels, i.e. it covers the spatial relationship (spatial information)
between intensity values. In conclusion, the distribution of intensity values and the power spectrum
are utilized to perform a comparative model response image analysis, from which one can derive the
implications of decreasing the stimulus pixel size to reduce the execution time of spatial filtering models.

Indeed, the results of the analysis show that decreasing the size of the stimuli changes properties
of the corresponding model responses. However, the degree of change is very dependent on the dif-
ference on the individual stimulus and its size in pixels. The similarity analysis produced four key
findings: With decreasing size, the distribution smooths out, i.e. the distribution variability decreases.
Furthermore, the range of intensity values varies in a non-predictable manner, i.e., the minimum and
maximum intensity values di↵er significantly when the model response pixel size changes. The average
intensity value remains close to zero, irrespective of the model response pixel size. However, larger
model responses converges to 0, i.e., the distribution of intensity values is centered around zero. More-
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over, the power spectrum analysis reveals that higher spatial frequencies are lost when pixel size of
the model response is decreased. But not only high frequency information lost, model responses di↵er
in low frequencies as well. In conclusion, if one wants to utilize smaller stimuli to increase the model
execution time, one has to be aware of a variety of model response properties that change.
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2

Methods

Applying a spatial filtering model is very time-consuming. This is due to the many filter operations
that are performed on every pixel of the model input image (usually a stimulus). However, if one
reduces the amount of pixels of that stimulus, the execution time of the spatial filtering is drastically
reduced. For users of the model, the time saved can be significant. However, a reduction causes changes
in the model response. Predicting or observing these changes is non-trivial. Yet, it is crucial to be
aware of model response changes, as anyone who works with them relies on some of their properties
to remain stable. To evaluate the (dis)similarity of model responses, one can utilize the distribution
of intensity values and the power spectrum. Both methods are well-established in image comparison
and complement each other very well. In conclusion, the goal of this thesis is to evaluate the change of
model responses. The methodological approach to the goal is to take a stimulus; create the stimulus
in various pixel sizes; apply the model to each variation to get the model response; and to compare the
model responses (Fig. 2.1). This chapter elaborates on the definitions, representations and technical
implementation of the stimuli, its size and resolution, the spatial filtering model, the model responses
and the measures to compare them.

Figure 2.1: The stimulus, e.g. White’s E↵ect, serves as an input to a spatial filtering model, e.g. the FLODOG model. The model

output is a digital image of the predicted brightness perception of the stimulus. The model is applied to a stimulus of original pixel

size, and a stimulus of altered pixel size. To analyze the (dis)similarity of the respective model responses, the power spectrum and

intensity value distribution of the model responses are used to compare them.
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2.1 Stimuli

Seven stimuli are considered for the comparative analysis (Fig. 2.2). It is necessary to use various
stimuli to reduce the likelihood that analysis results are not idiosyncrasies of a single stimulus. The
selection of stimuli includes two types of brightness perception phenomena: Assimilation and contrast
phenomena. Assimilation includes “examples where the brightness of a test patch is shifted toward
the brightness of the region that it shares the majority of its border with”, the latter characterizes
“examples where the brightness of the test patch is shifted away from the region that it shares the
majority of its border with”(Robinson, Hammon, and Sa [1]). The stimuli are created following the
implementation of Robinson, Hammon, and Sa [1]. The attentive observer will have noticed, that each
stimulus is displayed on a gray, rectangular background. Technically, the background and stimulus are
di↵erent objects. However, Robinson, Hammon, and Sa [1] states that the background is necessary “to
allow for valid filtering”. In this thesis, I will refer to the term stimulus to describe the combination of
stimulus and background, unless stated di↵erently. For the sake of completeness, it is worth mentioning
that the intensity values of each stimulus are normalized. Instead of a gray scale between 0 and 255
as described in ??, they are composed of values between 0 (black) and 1 (white). In chapter 1 the
size of a stimulus was introduced as the quantity of pixels it contains. The reality is a little more
complicated. The relation between pixel quantity and stimulus size will be explained in detail in
section 2.2. In fact, the size of each stimulus is 32°x32° degrees of visual angle[1]. The visual angle
describes the relation between object size and its distance to the spectator. In scientific experiments,
the stimuli are presented to subjects[1], [3], [6]. To ensure comparability, the stimuli are presented so
that they always take up the same amount of space of the subjects’ visual field. Hence, the size of a
stimulus is expressed in degrees of visual angle. The stimuli are implemented according to Robinson,
Hammon, and Sa [1]. For the original stimuli sources, refer to table ??. The naming of the stimuli is in
accordance with Robinson, Hammon, and Sa [1], except for Checkerboard-0.94 and Checkerboard-2.1.
Throughout the thesis they will be referred to as Checkerboard-0.938 and Checkerboard-2.09 to reflect
their exact implementation details (compare Robinson, Hammon, and Sa [1]).
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(a) WE-thick [3], [4] (b) WE-circular1[16]

(c) Todorovic-in-large[3], [17] (d) Todorovic-equal[3], [18]

(e) SBC-large[3] (f) Checkerboard-0.94[19]

(g) Checkerboard-2.1[19]

Figure 2.2: This figure displays each stimulus and the corresponding ”FLODOG” model response. The model responses are the

object of the similarity analysis.

2.2 Resolution and size

In chapter 1 and the previous sections of this chapter, I refer to the term size as the pixel quantity
of an image. Furthermore, the question this thesis aims to answer was phrased as follows: How the
model response changes if the size of the underlying stimulus changes, i.e. how does the model response
change with changing quantity of pixels? In section 2.1, the size of the stimulus was re-defined to be
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represented in degrees of visual angle. Hence, the term size will not be used anymore to refer to the
pixel quantity. This is why it is necessary to introduce the concept of resolution. The spatial resolution
of an image is commonly represented as “dots (pixels) per unit distance” [8]. For the stimuli and model
responses, the unit distance is degree of visual angle. Consequently, their resolution is expressed as
pixels per degree of visual angle (PPD). The higher the amount of pixels per degree, the higher the
resolution and vice versa. So, if the pixel quantity of a stimulus changes, it actually reflects a change
in resolution, not in size. Hence, correctly phrased, this thesis aims to answer how the model response
changes when the resolution of the associated stimulus changes.

The stimuli are used by Robinson, Hammon, and Sa [1] with a resolution of 32PPD. Hence, the
”stimuli” package creates stimuli with a default resolution of 32PPD as well. The default model
response has the same resolution. To answer how this default 32PPD model response changes with
changing resolution, it is compared against model response of the same stimulus that di↵er in resolution.
Because the motivation is to reduce the pixel quantity and consequently the model execution time,
only stimuli with lower resolutions are candidates to replace the default resolution and simultaneously
speed up the model execution time. However, to understand general patterns, it is helpful to examine
higher resolutions as well. This is why, model responses with resolutions of 64PPD, 16PPD, 8PPD,
4PPD, 2PPD and 1PPD are used to perform a comparative analysis against the default 32PPD model
response.

Figure 2.3: The visual angle describes the size of an object, e.g. a stimulus, in relation to its spectator. Source: Mathôt [20]

2.3 Spatial filtering model and model responses

As mentioned in section ??, spatial filtering is at the core of several brightness perception models[1],
[3], [6], [19]. The essence of spatial filtering is the alteration of intensity values. Gonzalez and Woods
[8] describe that in detail: “The spatial domain [alteration] processes [...] are based on the expression
g(x, y) = T [f(x, y)], where f(x, y) is an input image, g(x, y) is the output image, and T is an operator
on f defined over a neighborhood of point (x, y).” The operator is then applied to the pixels of that
image. Fig.1.2 illustrates a point (x0, y0) and the corresponding neighborhood. A particular group of
spatial filters, the Di↵erence-of-Gaussian(DoG) filters, are used to model components of the human
visual apparatus, including brightness perception[1], [3], [6]. The DoG filters are designed to model the
behavior of retinal ganglion cells. In simple terms, these cells consist of two concentric circles. If light
falls into the inner circle, the cell is activated; if light falls into the outer circle, the cell’s activity is
suppressed [7], [21]. The DoG-filter models that “center-surround”(McMahon, Packer, and Dacey [7])
e↵ect. The filter is the sum of a positive, center Gaussian function and a negative, surround Gaussian
function[21], [22](Fig. 2.4a). Fig. 2.2e illustrates that the perceived intensity (brightness) of a gray
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patch depends on the respective background (either black or white). That suggests, the human visual
system combines the intensity value at the gray patch (center) and at the background (surround)
to compute brightness. And so does the DoG-filter. One model, that has proven to capture many
properties inherent to a variety of brightness perception e↵ects, is the oriented di↵erence-of-Gaussian
(ODOG) model by Blakeslee and McCourt [3]. Robinson, Hammon, and Sa [1] elucidate the model’s
functionality and processes: It consists of 42 oriented DoG filters that di↵er in orientation and scale.
Oriented DoG filters are much like DoG filters except that they are not circularly symmetric, i.e., either
the surround or the center is elliptic[22] (Fig. 2.4b). The outputs of each filter operation are summed,
normalized and recomposed to produce the model response which contains a prediction of the stimulus’
perceived brightness[1]. However, Robinson, Hammon, and Sa [1] demonstrate that the ODOG-model
“fails on [...] variation[s] of White’s e↵ect”. To compensate for that weakness Robinson, Hammon,
and Sa [1] developed a model called FLODOG that introduced a new normalization procedure. This
model is used in this thesis. Whenever I refer to the model response, I refer to the FLODOG model
response.

The FLODOG model is used to predict the perceived intensity (brightness) of a stimulus. The
model takes a stimulus as an input and modifies the corresponding intensity values. The model output
is the perceived brightness of that stimulus - the model response. The stimulus is represented as a
matrix with an intensity (gray scale) value at each matrix element. Likewise, the model response
is a matrix of the same size. Each matrix element of the model response represents the perceived
brightness of the stimulus’ intensity value at that same position. The model response is a digital
image and consists of intensity values as well. The scale of intensity values range from negative
(darker) to positive (brighter) values, because the filters are designed to perform subtractions on
positive values and, hence, may result in negative and positive values. Finally, it became apparent
how many computations are involved in the application of a multiscale spatial filtering model. That
explains why the execution of the model is so time-consuming and why it is so valuable to decrease
the stimulus’ resolution and consequently the model execution time.

(a) The two-dimensional di↵erence of Gaussian (DoG) filter, created

with the multyscale package. Source: Vincent [22]

(b) The two-dimensional oriented DoG filter, created with the mul-

tyscale package. Source: Vincent [22]

Figure 2.4
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2.4 Comparing model response images

Decreasing the resolution of a stimulus, to decrease the execution time of the model, introduces po-
tential changes in model response properties. To understand in which ways model responses are
(dis)similar from another, the default model response is compared with model responses of various res-
olutions. The model responses happen to be digital images. Comparing digital images and evaluating
their (dis)similarity is a well-established field of research [10]–[13], [23].

Despite similarity analysis being an established field of research, many image similarity measures are
developed for images of natural scenes, which the model responses are clearly not. Consequently, one
has to be careful when choosing an image similarity measure. Demidenko [9] states that images can be
divided into two groups: Structured and unstructured ones. Structured images are easily recognizable
by humans, e.g. a “human face, building, carrot, rug, and so on”. Unstructured images are not that
easily interpretable by humans (e.g. remote-sensing, medical or astronomy imagery). I argue that
model responses belong to the category of unstructured images. As with medical images, humans are
not capable of extracting semantics from these images, unless they’re professionally trained. Think
of the years of training that a radiologist needs to interpret MRI images. Demidenko [9] argues that
unstructured images “may be well represented by its gray level [intensity value] distribution”. The
literature provides many examples in which the gray scale (intensity value) distributions are used to
compute image similarity[10]–[12].

A distribution of intensity values consists of a horizontal axis which displays the image intensity
values, and a vertical axis that displays their absolute and/or relative occurrence (Fig. 2.5. The
distribution quantifies the amount of pixels that have a distinct intensity value, but it abandons
information to the pixel location[24]. Hence, spatial relationships are ignored. Instead, the distribution
contains general information about the scale, distribution, density, and mean of the images’ intensity
values[14].

Figure 2.5: Distribution of intensity values for the WE-thick, displaying absolute and relative occurrence of intensity values present

in the image

The power spectrum is another feature that is widely used to compute the similarity between un-
structured images (see Arun and Menon [13], Wang, Reese, Zhang, et al. [23]). To retrieve its power
spectrum, an image must be converted from the spatial representation to the frequency based repre-
sentation. The spatial representation of an image consists of a set of intensity values at specific spatial
locations, in other words, a MxN matrix where each matrix element represents a pixel. To describe
the content of that image as a frequency-based representation, it requires the same MxN matrix.
However, the values of the matrix elements mean something entirely di↵erent: Instead of intensity
values and their spatial location, they represent amplitudes and phases of sinusoidal constituents[15,
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p.29-31]. A method, which is used to analyze the frequency based representation of an image, is the
Discrete Fourier Analysis. Its result is the representation of the image as a relation of frequency and
amplitude. The power spectrum is the squared amplitude spectrum. It displays which frequencies
exist with what magnitude in a given image[15, p.33-34] and encodes information from basic elements,
e.g. orientations, pattern of periodicity and prevalent frequencies[25, p.101].

2.5 Resources and tools

Throughout this thesis, Python 3.10.1 is used. The creation of the stimuli is facilitated by the ”stimuli”
package of the Department of Computational Psychology at Technische Universität Berlin [26]. To
apply spatial filtering models to stimuli, I use the ”multyscale” Python package, which is provided
by the Department of Computational Psychology at Technische Universität Berlin as well[27]. The
Python package NumPy is used because of its ability to handle two-dimensional arrays (matrices)
and its variety of mathematical functions that allow for extraction of many helpful matrix properties.
Matplotlib is a comprehensive Python library that provides many visualizations to analyze and visualize
the data. Many images within this thesis were created using Matplotlib. Jupyter notebooks were used
to explore the data, assess di↵erent approaches, execute computations and plot the visualizations.
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3

Results

To analyze how decreasing the stimulus resolution, changes the associated model response, seven types
of stimuli are utilized (2.2). For each type, various resolutions are created. In a next step, the FLODOG
model is applied to each resolution. The yielded model responses are digital images that predict the
perceived intensity of the underlying stimulus. These model responses are compared using two image
metric: The distribution of the model response intensity values and the power spectrum of the model
response (2.1).

The results of the comparative analysis show that the model responses of with lower resolutions
vary from the default model responses. Four key findings describe the variation:

1. The distribution of intensity values smooths out when the resolution decreases.

2. The range of intensity values change depending on the underlying stimulus.

3. The average intensity value converges to 0 with increasing model response resolution.

4. Finding of power spectrum analysis.

3.1 Distribution of model response intensity values

The distributions provide a comprehensive overview of how model responses with altering resolutions
di↵er from each other (Fig. 3.1 and 3.2). Three patterns particularly stand out: First, the distribution
is relatively symmetric and centered around zero; irrespective of the resolution or stimulus. Second,
with decreasing resolution, the minimum intensity value increases and the maximum decreases. Third,
the distribution of intensity values smooths out when the resolution decreases.

The range (di↵erence between minimum and maximum) of intensity values seems to decrease sys-
tematically with decreasing resolution (Fig. 3.2a, Fig. 3.2b and Fig. 3.2c). Fig. 3.2d suggests that
this pattern also occurs for the model response of SBC-large. The model response distributions of WE-
thick, Checkerboard-0.938, Checkerboard-2.09 (compare Fig.3.1, 3.2e and 3.2f do not indicate whether
the phenomenon also occurs there. A more detailed analysis shows that the relationship between
range and resolution is, in fact, non-linear(Fig. 3.3. Despite the general trend that a lower resolution
corresponds to a lower range, the exact rate of change is very dependent on the underlying stimulus.
Yet, a common pattern among all stimuli emerges: The range peaks at 8PPD or 16PPD. From there,
the range decreases again with increasing model response resolution. Indeed, the range does not grow
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linearly with increasing resolution. The exact magnitude of decrease and increase between varying
resolutions changes between the stimuli, the model was applied to. With a value above 100, the range
of Checkerboard-0.938 peaks at 16PPD. In comparison, the model response of SBC-large displays a
peak between a value of 60 and 70 at a resolution 8PPD. Moreover, the model response range of most
stimuli continuously increases until it reaches its maximum. The minimum range is at a resolution of
1PPD. A closer investigation of the stimuli (Fig. 2.2 and the range (Fig. 3.3) suggests a relationship
between the frequency, i.e. how often regions of an image alternate di↵erent intensities, and the range.
Stimuli with higher frequencies, such as WE-circular1 and Checkerboard-0.938 (Fig. 2.2b and Fig.
2.2f), seem to display a higher range (Fig. 3.3). In conclusion, the ranges of model responses show
similar growth and shrink patterns. Yet, the absolute range as well as the degree of change varies to
a large extent and is dependent on the underlying stimulus.

The center of each distribution is close to zero. Furthermore, the distribution appears very sym-
metric. This is true throughout model responses of all resolutions and stimuli (Fig. 3.1 and Fig. 3.2).
Consequently, the average value must be close to zero as well, because for each positive intensity value,
a negative intensity value of nearly the same magnitude is supposed to exist. These values balance each
other out, leaving the value of the center, which is zero. If that was not the case, the distribution would
not be symmetric. It is common to express the average as the mean or the median. As expounded,
both are expected to be close to zero throughout all underlying stimuli and resolutions. This finding is
especially interesting because it shows that a model responses’ property remains relatively persistent
even if the model response resolution changes. To understand how model response properties change
with altering stimulus resolution, it is also crucial to assess how they do not change. A more detailed
analysis demonstrates that the model responses’ mean and the median no not change significantly,
despite their di↵erence in resolution and underlying stimuli. The mean varies between -0.2 and 0.3;
much as the median, which fluctuates between -0.4 and 0.3 (Fig.3.4a and Fig.??). Those values are
considered to be close to zero; and their variations are rather small given an intensity value range,
which is in some cases larger than 100 (Fig.3.3). This finding confirms the visual assumption that the
center of the distribution is close to zero. Regardless of the small scale on which the mean and median
change, it is noteworthy how they change: Except for the model response of Checkerboard-0.938, the
mean and median of all other model responses converge towards zero with an increase in resolution.
The detailed change depends on the underlying stimulus. While the mean and median of some model
responses start to asymptote to zero from a negative value, others asymptote to zero, starting from
a positive value. If the mean value of a particular model response is negative, the median value is as
well; although in a di↵erent magnitude.

In addition to the previous findings, the distribution smooths out when the resolution decreases
(Fig. 3.1 and Fig. 3.2). The directional changes of the distribution’s graph decrease with decreas-
ing size; the local minima and maxima of the graph converge on the y-axis until they finally merge
into a monotonically decreasing or increasing function. The pattern becomes particularly visible for
the distributions of WE-circular1, Todorovic-in-large, Todorovic-equal and SBC-large (Fig. 3.2a, Fig.
3.2b, Fig. 3.2c and Fig. 3.2d). Model responses of these stimuli with resolutions between 64PPD and
8PPD show especially much variability that gets lost when the size decreases. In summary, the his-
togram revealed several patterns that indicate how the model response of a stimulus changes (or does
not change) when the respective resolution decreases. However, it became apparent that even though
these patterns apply to most model responses, the exact nature of change depends on the individual
stimulus.
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Analyzing how model responses change with changing resolution yielded key findings, each of which
is dependent on the stimulus and comes along with some exceptions. First, the model response range
shows similar grow and shrink patterns throughout all stimuli. Low resolutions tend to contain low
ranges, however that relation is non-linear. However, SBC-large di↵ers from that general norm. Even
though the model response reaches its maximum range at 8PPD like the other model responses, its
minimum is reached at 64PPD. Second, the model response distributions converge to a median and
mean of zero with an increasing resolution. However, the average is very close to zero for all stimuli,
irrespective of their resolution. The model response of Checkerboard-0.938 is an outlier, because neither
the mean nor the median of its model response converge to zero. Instead, they show a relatively stable
value around 0.1 for all resolutions. Finally, all distributions are symmetric. The only exception to that
are the distributions of Checkerboard-0.938s model responses (compare Fig.3.2e), which display slight
asymmetries for resolutions of 16PPD, 32PPD and 64PPD. In contrast to the other distributions, it
shows an asymmetric, sharp-edge peak and a larger area on the right than to the left of the center.

Figure 3.1: Each distribution represents model response intensity values for di↵erent resolutions of WE-thick. The resolution is

shown on the left side of the distribution. The x-axis represents intensity values. The y-axis shows the relative occurrence of these

intensity values. Each distribution is normalized such that their total area is equal. To display the distribution, the kernel density

estimation (KDE) is used. The KDE is a widely used method to approximate the probability density function of a given dataset

and plot its distribution[28].

3.2 Power spectrum analysis

The power spectrum analysis has produced two main findings: First, the total power of the model
response increases with increasing resolution, reaches its maximum quickly and remains almost unal-
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tered when the resolution is increased even more. Second, the total power of only the low frequencies
stays very stable throughout various resolutions and stimuli.

The total power of an image is calculated as the sum of the normalized power spectrum of that
image. For the assessed stimuli and resolutions, the total power of each model response remains very
stable between 64PPD and 8PPD for most stimuli and decreases with decreasing resolution between
8PPD and 1 PPD (Fig. 3.5a). A more detailed analysis shows that the maximum total power of a
model response is reached at 16PPD or 8PPD for each stimulus. However, the di↵erence between the
total power maximum at 16PPD and the total power at 32PPD or 16PPD is very small and invisible to
the human eye at the line graph (Fig. 3.5a). The magnitude of the model response total power varies
significantly and depends on the underlying stimuli: WE-circular1 has its largest power spectrum at
64PPD (234). Checkerboard-0.938 displays its largest total power at 8PPD with a magnitude of 70.
The model responses of all stimuli have their minimum total power at a resolution of 1PPD. Yet, the
magnitude of the minimum varies between a magnitude of 134 (SBC-large) and 14 (Checkerboard-
0.938). The comparison of total power is helpful, but it comes with limitations. The highest image
frequency that one can recover with the Discrete Fourier Transform depends on the sampling rate,
i.e., the resolution of the image. This phenomenon is described by the Nyquist limit. The maximum
frequency is dependent on the sampling rate of an image, i.e. the pixels per degree. Hence, the power
spectrum of model responses with lower resolutions cannot recover the high frequency components of
an image. Hence, if one compares the power spectra of model responses with di↵erent resolutions, one
compares di↵erent frequency components of an image[29].

To compare the same frequency spectrum among di↵erent resolutions, one can use the frequency
components that are present in all resolutions. Hence, the frequency components of the lowest reso-
lution. The maximum frequency of the lowest resolution amounts to 0.5 which is half the sampling
rate of 1PPD[29]. The comparison of the total power of the low model response frequency components
up to 0.5 (TPLMRFC) shows that the model responses of almost all stimuli remain stable between
64PPD and 8PPD. The deviation between 64PPD, 32PPD and 16PPD is very small for all model
responses. Even the deviation between 64PPD and 2PPD is tiny for most of them. The magnitude
of the TPLMRFC is very dependent on the underlying stimulus: Todorovic-in-large has the highest
TPLMRFC (134) and Checkerboard-0.938 the lowest (14).

In summary, the total power of a model response and the TPLMRFC remain very stable between
64PPD and 8PPD. However, the steadiness of the TPLMRFC appears to be little altered between
8PPD and 2PPD as well (compare Todorovic-in-large, WE-thick and SBC-large in Fig 3.5b). In,
addition to these general patterns, a closer assessment of the total power suggests a link to the range
(Fig. 3.3). Both, the range and the total power peak at 16PPD or 8PPD. From that peak, both
decrease with decreasing resolution; and remain relatively steady with increasing resolution. Even
though, the pattern of TPLMRFC appears similar to the range as well, it is di↵erent from range and
total power in that it remains on a similar magnitude between 64PPD and 4PPD for many stimuli
before it notably starts decreasing.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2
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Figure 3.3: The figure shows the range of intensity values for model responses of di↵erent stimuli and resolutions. Given the

minimum intensity value (min) and maximum intensity value (max) of a model response, the range was computed as max�min

(a) The figure shows the mean intensity values for model responses

of di↵erent stimuli and resolutions. The mean intensity value is cal-

culated as the sum of all intensity values divided by the number of

intensity values.

(b) The figure shows the median intensity values for model responses

of di↵erent stimuli and resolutions.

Figure 3.4
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(a) The model response total power of various resolutions and stim-

uli. The total power is calculated as the sum of power spectrum.

The higher the resolution, the more frequency components can be

considered.

(b) The model response power of frequencies up to 0.5 for multiple

resolutions and stimuli. The total power of these frequencies is cal-

culated as the sum of the power spectrum associated to frequencies

up to 0.5.

Figure 3.5
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4

Discussion

The execution of multiscale spatial filtering models, that respond with a prediction of the perceived
brightness of a stimulus (model response), is a time-consuming process (Chapter 1). The computations
and, hence, the execution time are depended on the resolution of the stimulus (Chapter 2). The
higher the resolution, the more computations, the slower the model execution process and vice versa.
Consequently, one can reduce the model execution time by decreasing the resolution of the stimulus
(Fig. 1.3). The reduction entails changes of the associated model response. Analyzing these changes
is crucial for anyone that aims to speed up the model execution by reducing the stimulus resolution.
To assess the model response changes, seven stimuli are used (Fig. 2.2). Each stimulus is created in
various resolutions. The FLODOG model is applied to all variations of the stimulus. The yielded model
responses are of di↵erent resolutions as well. To assess their (dis)similarity and understand how they
change, the intensity distributions and power spectra of the model responses are compared (Fig 2.1.
Indeed, the model responses of a stimulus vary significantly, depending on their resolution (Chapter 3).
Even though detailed change depends on the stimulus, some common patterns are observed throughout
almost all stimuli:

1. The range of intensity values change depending on the underlying stimulus.

2. The average intensity value converges to 0 with increasing model response resolution.

3. The distribution of intensity values smooths out when the resolution decreases.

4. Finding of power spectrum analysis.

The intensity range of model responses changes when the resolution of the underlying stimulus
changes (Section 3.1). In particular, the range increases with increasing resolution until 8PPD or
16PPD, depending on the stimulus. For resolutions larger than that, the range starts to decrease
again mildly. However, the detailed magnitude of change depends on the stimulus. One hypothesis
would be that larger model responses contain a higher range of intensity values than smaller model
responses. The reason for that is that larger model responses contain more pixels. Hence, they have a
higher resolution and, in theory, the ability to display more details. This assumption was false for the
model responses that were evaluated: The range of model responses increases between 1PPD and 8PPD
and decreases again at either at 8PPD or 16PPD (Fig.3.3). Resolution and range do not correspond
linearly. A closer investigation of the stimuli and the range of model responses suggests a link between
the stimulus frequency and the model response range (Fig.2.2 and Fig 3.3): Checkerboard.0938 and
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Figure 4.1: The figure shows the root-mean-square contrast (RMS) of model responses for di↵erent underlying stimuli and resolutions.

The RMS is calculated according to Peli [31]

WE-circular1 alternate more often between black and white than for example SBC-Large or Todorovic-
equal. Simultaneously, the stimuli with higher frequency of alternations, show higher ranges. This
seems to be a systematic pattern. The pattern illustrates very well that the detailed change of the
model response is dependent on the details of this stimulus itself; in this case, the di↵erent stimulus
frequencies. In search for a potential explanation for that relationship, I did not find a direct link
between the range of model responses and the frequency, but I found one between contrast and range.
In fact, contrast, the di↵erence of luminance, can be quantified by the range of brightness values[30]. A
quick analysis of the 32PPD model responses has shown that the root-mean-square contrast(RMS) and
the range show similar line graph patterns(Fig. 4.1 and Fig. 3.3). That seems reasonable: Contrast
is defined as the di↵erence in luminance. A higher range allows for a higher di↵erence in luminance.
Nonetheless, one can clearly see that the ranking of stimuli magnitude di↵ers between the measure,
i.e., the underlying stimulus of the model response with the highest range does not have the highest
RMS.

The median and the mean of model responses converge to zero when the model response resolution
increases (Fig. 3.4a and Fig. ??). This is true for the model responses of most examined stimuli. The
center of the model response intensity distribution is close to zero and appears to be symmetric. The
mean and median deviate no further than 0.4 from the expected value of zero. A general pattern is
that smaller model responses deviate further from 0 than larger model responses. An assumption, why
that deviation might occur, could be that the mean of smaller model responses is more susceptible to
be influenced by outliers, because it contains fewer pixels. The influence of such outliers on the mean
could have been reduced with increasing resolution, i.e. more pixels, which why the mean converges
closer to zero accordingly. This assumption is false, because the median, which is not susceptible to
outliers, shows a similar pattern of convergence with increasing resolution.

Moreover, the distribution smooths out when the resolution of the model response changes (Fig.
3.1 and Fig. 3.2). The smaller the resolution of a model response, the less variability in the distribution
graph. One can interpret that as losing detail in the intensities, i.e., intensity values that are close
to each other occur with approximately the same magnitude. Hence, all model response images are
becoming more and more similar in intensity values.

With decreasing model response resolution, high-frequency information is lost. This loss is inherent
by design of frequency-based image representation (section 3.2). However, the total power of the of
model responses remain very stable between 64PPD and 8PPD (Fig. 3.5a). The total power decreases
notably between 8PPD and 1PPD. This change cannot be surprising: The total would not di↵er if it
was the same image. Furthermore, one could reason that with the loss of high-frequency information,
one loses the amplitudes of those frequencies. Consequently, the total power of high resolution model
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responses should be higher than the total power of low resolution model responses. That reasoning
is false. In fact, the model response power for all model responses peaks at either 8PPD or 16PPD,
even though high-spatial frequency information is lost. Moreover, one could make the assumption that
despite the loss of high-spatial frequency information, low spatial frequency information of all model
responses are the same, irrespective of their resolution. This is not true. Comparing the total power of
the low model response frequency components (TPLMRFC)(Fig. 3.5b) shows that the magnitude of
TPMRFC di↵ers between resolutions. That show that the model responses di↵er in low frequencies as
well. However, the TPMRFC does not change as notably as the total power, which suggests that with
decreasing resolution, more high than low-frequency information is lost. In addition, the total power
and the range of model responses, show a similar line graph pattern. However, even more obvious is
the link between RMS and the total power of a model response. Their graphs seem to be identical
(Fig. 3.5a) and Fig. 3.3). Indeed, the literature suggests that the squared RMS and the total power
(energy) are equal[32].

In some cases, scientist rely on the range[3] and the average[1] to be consistent when comparing
the brightness of two patches1, e.g., comparing a WE-thick model response patch with an SBC-large
model response patch. Scientists use the range and the average to normalize the intensity values of
the patches. This normalization step is indispensable to compare the intensity of the patches. It is
easy to illustrate that: A patch with an intensity of -1 has a di↵erent significance for a stimulus with
a range of intensity values between -1 and 1 than for a stimulus with a scale between -100 and 100.
The range and the average (mean median) of a model response change notably, when the size of the
stimulus changes. Anyone who decreases any stimulus, to improve the model execution speed, should
be aware that they cannot neither rely on a steady range nor a steady average of intensity values for
the associated model response. Both, the range and the average of the model response change with
decreasing resolution. However, the absolute magnitude of change varies clearly noticeable. Suppose,
the resolution is decreased from 32PPD to 16PPD. The di↵erence in mean and median would become
noticeable in the second or third decimal place. In contrast, the di↵erence in range varies between 2
and 5. If one uses the model response range or the average for normalization purposes, one has to be
aware of the change caused by decreasing the resolution of the stimulus. Instead of using the range to
normalize, one could consider using the total power. Contrast and range are related. Range and total
power are related. The absolute magnitude of total power change between 32PPD and 16PPD is less
than 1.5. Hence, if one wants to decrease the stimulus and normalize the brightness of the patches,
a method that uses the contrast for normalization, could be more reliable than normalizing with the
range. Moreover, the power of lower frequencies changes less with decreasing resolution than the total
power of low model response frequencies, which suggests that one can consider the use of the lower
frequencies even if the resolution of the model response decreases from 32PPD to 16PPD. Despite all
these considerations, one has to be aware that the exact changes of the model response are based on
the underlying stimulus. Consequently, if one wants to decrease the stimulus ”only” from 32PPD to
16PPD, it is crucial to keep any model response property in check that one wants to utilize later on.

The total power of the model response changes with decreasing resolution. In addition, there is an
equality of power and contrast. Hence, the model response contrast changes, with changing resolution
as well (Fig. 4.1). That is especially interesting, given the fact that the contrast of the input stimulus
does not change with changing resolution (Fig. 4.2a and Fig. 4.2b). An obvious assumption would
be that the contrast of the model response changes because the perceived contrast changes. That

1Patches are the areas of a stimulus that are of identical luminance, but that humans perceive as di↵erently bright.
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(a) The root-mean-square contrast of the Todorovic-equal stimulus;

and the FLODOG model response of Todorovic-equal.

(b) he root-mean-square contrast of the WE-circular1 stimulus; and

the FLODOG model response of WE-circular1.

Figure 4.2

would suggest that the FLODOG model does not only model perceived brightness, but also perceived
contrast. Indeed, [p.1641]Robinson, Hammon, and Sa [1] mentions in his results that the model predicts
contrasts according to some peoples’ perception. The FLODOG model aims to model early human
vision. Contrast and brightness perception are both expected to occur in the early stages of human
vision[1]. Hence, it is not surprising if the FLODOG model were to predict contrast as well. Another
finding is that all stimuli have the same contrast. However, the contrast of their model response
changes.

The aforementioned patterns come along with some exceptions: The SBC-large model response
shows model response ranges that deviate from model responses of other stimuli. It shows a higher
range of intensity values at 1PPD than at 64PPD, which is contradictory to the patterns of other
model response (Fig. 3.3). The average intensity for the model responses of Checkerboard-0.938 does
not converge to zero like the other model responses (Fig. ?? and Fig. 3.4a). The average remains at
an almost constant value close to zero, irrespective of the resolution. Moreover, the model response
intensity distribution of Checkerboard-0.938s deviates from other model responses due to its slight
asymmetry (Fig. 3.2e). The distribution tends to occupy more space on the right than to the left of
the center. The center of the distribution is close to zero. That means, the area on the right of the
center represents the positive intensity values. This circumstance allows the assumption that the model
response of Checkerboard-0.938 contains more pixels with high intensity values than pixels with low
intensity values. However, the visual impression of Fig.4.3 does not seem to support this assumption
at first glance. It rather suggests the opposite, because the model response seems to contain a surplus
of negative intensity values. This impression is caused by the corners of the 32PPD checkerboard as
well as their immediate surrounding. They appear bluer and hence smaller than other parts of the
model response. In addition to that, the 1PPD model response contains more rectangles with negative
intensity values. However, this suggestion might be a misconception. In contrary, these corners could
be the reason why the distribution of Checkerboard-0.938 shows an excess of positive values near the
center. This might seem counterintuitive, but it becomes clearer, when one takes a closer look at
Fig.3.4a and Fig.3.4a. The mean and median of most model responses have the tendency to converge
towards zero. Hence, the model response contains intensity values that are balanced between negative
and positive intensity values. For the model response of Checkerboard-0.938 to be balanced, it needs
to contain high intensity values to counteract the imbalance caused by the corners. Indeed, a visual
inspection of the 1PPD model response in Fig.4.3 leaves the spectator with the impression of a reddish
background, which is an indication of a slight surplus of positive intensity values.

How do model responses change when the resolution of the underlying stimulus changes? Any user
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Figure 4.3: Left: Response of the FLODOG model applied to Checkerboard-0938 e↵ect with 1,048,576 pixels. Right: The same

model applied to the same stimulus with 1,024 pixels. The color bar shows the intensity value of the corresponding model responses.

Lower intensity values, represent less brightness and vice versa.

of the model, who wants to decrease the stimulus resolution to increase the model execution time, has
to be aware that properties of the model response will change and that those changes are non-trivial to
predict because the degree and magnitude of change are very dependent on the underlying stimulus.
If those changes are acceptable for their use case, can only be answered by the user. Despite those
changes, some properties are more robust than others. The FLODOG model seems to contain an
inherent mechanism that causes the average to converge to zero and maintain and even range. Even
the mean and median of low resolutions remain close to zero. The model response range behaves less
predictable. Its total value is very dependent on the stimulus. It neither falls nor rises reliably with
increasing or decreasing resolution. Some properties could have resisted change completely. The power
of low frequencies could have stayed exactly the same, because with decreasing resolution, only high
frequency information is lost. But in fact, also the low frequency information of the model response
change with changing resolution. The fact that some properties change less than others, seems to reveal
more information about the inherent behavior of the models. Maybe these findings are self-evident
for the originators or frequent users. Nonetheless, to my knowledge, these properties have not been
mentioned explicitly in any of the original papers. For someone who is starting to use these models,
making these model behaviors explicit, can only ever be a contribution.
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