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Abstract

Edges are important visual features of our environment and it is widely believed that extracting

edges from the visual input is an early step in human visual processing. Evidence has accumu-

lated that edge detection may be mediated by a narrow spatial scale around 3 cpd. However,

most evidence has been gathered with isolated edges and hence simplified stimuli. As it is an

open question to which extent these simplified stimuli unveil the inner workings of the visual

system, complementary research using natural stimuli is necessary. Since there is no standard

approach for testing human edge perception in natural images, this thesis has two aims: (1) We

have developed and evaluated a method for testing human edge perception in natural scenes,

and (2) we have used a noise-masking paradigm to investigate whether human edge perception

in natural scenes is similarly a↵ected by noises that interfere with spatial frequency contents

around 3 cpd as it is the case for isolated edges. The basis of our approach is a contour segmen-

tation task, in which participants are instructed to segment the outlines of the image contents

in a natural image using a self-created segmentation tool. To quantify human performance and

to measure the quality of our approach, we compare the resulting segmentation maps with a

ground truth using a similarity heuristic. Assessing our method, it seemed to be valid and

e↵ective to test edge perception in natural images. Consistent with prior literature, we found

that also for more naturalistic stimuli, edge perception deteriorates most when interfering with

image contents at a spatial scale of 3 cpd.
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Zusammenfassung

Kanten sind wichtige visuelle Merkmale unserer Umwelt und es wird allgemein angenommen,

dass die Extraktion von Kanten aus dem visuellen Input ein früher Schritt in der menschlichen

visuellen Verarbeitung ist. Es hat sich gezeigt, dass die Erkennung von Kanten durch eine

Raumfrequenz um 3 cpd vermittelt wird. Die wissenschaftliche Grundlage dafür wurde jedoch

größtenteils mit isolierten Kanten und daher mit vereinfachten Stimuli gescha↵en. Da es eine

o↵ene Frage ist, inwiefern diese vereinfachten Stimuli das Innenleben des visuellen Systems

enthüllen, ist ergänzende Forschung mit natürlichen Stimuli notwendig. Bis heute gibt es je-

doch keinen Standardansatz, um die menschliche Kantenwahrnehmung in natürlichen Bildern

zu testen. Daher verfolgt diese Arbeit zwei Ziele: (1) Wir haben eine Methode zum Testen der

menschlichen Kantenwahrnehmung in natürlichen Szenen entwickelt und evaluiert und (2) wir

haben ein ”noise-masking” Paradigma verwendet, um zu untersuchen, ob die menschliche Kan-

tenwahrnehmung in natürlichen Szenen in ähnlicher Weise durch Bildrauschen beeinträchtigt

wird, das einem räumlichen Frequenzgehalt von 3 cpd entspricht, wie es bei isolierten Kanten

der Fall ist. Die Grundlage unseres Ansatzes ist eine Konturensegmentierungsaufgabe, bei der

die Teilnehmer angewiesen werden, die Umrisse der Bildinhalte in einem natürlichen Bild mit

Hilfe eines selbst erstellten Segmentierungswerkzeugs zu segmentieren. Um die Kontursegmen-

tierunsgsleistung zu quantifizieren, aber auch um die Qualität unseres Ansatzes zu messen,

vergleichen wir die resultierenden Segmentierungen mit einer Grundwahrheit unter Verwen-

dung einer Ähnlichkeitsheuristik. Beim Testen unserer Methode haben wir festgestellt, dass

unser Ansatz valide und e↵ektiv scheint, um die Kantenwahrnehmung in natürlichen Bildern

zu testen. In Übereinstimmung mit früherer Literatur fanden wir heraus, dass die Kanten-

wahrnehmung auch bei natürlichen Stimuli am stärksten verschlechtert wird, wenn der Bildin-

halt in einer Raumfrequenz von 3 cpd beeinträchtigt wird.
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1 Introduction

1.1 Edges

Edges carry information about object and surface boundaries in images. An edge is a lumi-

nance step in space that is elongated in one direction. Edges are detected by neurons in the

human visual system and edge detection is widely believed to be a first step in many visual

processing tasks, such as surface representation (Salmela & Laurinen, 2005) or object recogni-

tion (Biederman, 1987). Furthermore, a primal sketch as introduced by Marr (1976) is often

theorized to be constructed at the start of human visual processing. The primal sketch is a

description of the basic elements of an image, usually containing edges. For these reasons, a

better understanding of edge detection in the human visual system could be key to gaining

insight into higher-level functionalities in human vision. Therefore, we want to further study

human edge perception in this thesis. Before we explain our approach, we will introduce some

general concepts on human edge perception and the underlying physiology that are needed to

further introduce and motivate our research.

The signals coming from the retina of the eye reach an early stage of visual processing in the

primary visual cortex (V1). There, neurons labeled simple cells process the retinal information

by responding selectively to stimuli of a certain spatial frequency (also called spatial scale) and

orientation. Spatial frequency refers to the number of pairs of bars in an image within a given

distance on the retina and is usually expressed in cycles per degree (cpd) (Figure 1)1.

Figure 1: Visual representation of spatial frequency. From left to right the spatial frequency

increases. https://www.rochester.edu/newscenter/microscopic-eye-movements-a↵ect-how-we-see-

contrast-358802

1http://www.psy.vanderbilt.edu/courses/hon185/SpatialFrequency/SpatialFrequency.html
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Hubel and Wiesel (1962) first discovered these simple cells in the primary visual cortex of a

cat and mapped their receptive fields. The receptive field of a cell in the visual system is

the area of the retina that influences the response of the cell (Hubel & Wiesel, 1962). The

receptive field of simple cells was shown to consist of parallel inhibitory and excitatory regions

of approximately the same size. These regions are separated by parallel lines. If light hits the

receptive field of a simple cell equally in both areas, the responses will cancel each other out,

and hence the simple cell will not respond to light impulses larger than its receptive field. But,

if an unregular pattern of light falls across the receptive field, the responses from the inhibitory

and the excitatory areas will not be the same and will instead be integrated to form a response.

Therefore, the response is strongest if light just hits the excitatory area of the receptive field.

That light impulse would be of the same orientation as the simple cell’s receptive field and its

spatial scale would relate to the size of the receptive field (Elder & Sachs, 2004).

Figure 2: Visual representation of receptive fields (A) and respective optimal stimuli (B). In (A)

the bright regions indicate the excitatory and the dark regions the inhibitory part. The scale and

orientation of the stimuli match the scale and orientation of the receptive fields.

Hence, a simple cell responds strongest to stimuli with a certain orientation and spatial fre-

quency, depending on the composition of its receptive field. For a visual representation see

Figure 2. Thereby, simple cells could function as filters decomposing the visual input into fea-

tures with di↵erent spatial properties (De Valois et al., 1982).

Some specific simple cells were additionally shown to respond strongest to stimuli represent-

ing edges (Hubel & Wiesel, 1962). Therefore, they were later speculated to account for edge
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detection and were hence called edge detectors (Tolhurst, 1972). Shapley and Tolhurst (1973)

measured the spatial frequency response of presumed edge detectors in a psychophysical ex-

periment. Their results showed that edge detectors seem to be most sensitive to stimuli with

a spatial frequency of 3 cpd. The results of Schmittwilken and Maertens (2022b) from a noise-

masking experiment support the results from Shapley and Tolhurst (1973). They also concluded

that a relatively narrow spatial scale around 3 cpd plays a special role in extracting edge in-

formation from the visual input. Given the assumption that simple cells respond to oriented

information with a specific spatial frequency, this implies that simple cells with a spatial fre-

quency selectivity of 3 cpd account for edge detection.

They used noise to mask their stimuli because noise introduces random fluctuations to a sig-

nal that hinders an accurate perception of it. Di↵erent types of noise exist, often containing

di↵erent frequency bands. Those di↵erent noises hinder only the perception of the frequencies

in the signal that are also contained in the noise. Therefore, if noise is applied to an image the

contents of the image in the frequency range of the noise are distorted and cannot be perceived

anymore. That way, noise can be used to unveil the sensitivity of neurons to contents in certain

spatial frequency ranges, e.g. the spatial frequency response of simple cells.

1.2 From Simple Stimuli to Natural Images

Many experiments use simple stimuli like sine wave gratings or bars and spots to study edge

perception. While using stimuli like these has long been standard practice in vision research,

they have also attracted criticism. The concern is that those stimuli might not be suitable to

truly unveil the functioning of the human visual system (Olshausen & Field, 2005). This has

given prominence to using natural images, meaning images of the real world. One argument for

the use of natural images as stimuli is that the responses of neurons to these simple stimuli may

not translate to natural images (Olshausen & Field, 2005; Touryan & Dan, 2001). As artificial

stimuli are often designed around assumptions of how the responses from neurons should be,

they may not contain features relevant to the response of a neuron (Touryan & Dan, 2001).

Additionally, neuronal processing is largely nonlinear, and therefore responses are often poorly

predicted by artificial stimuli alone (Felsen & Dan, 2005; Touryan & Dan, 2001). Examples

of response properties uniquely revealed by natural images are the research by Felsen et al.

(2005) and David et al. (2004). Olshausen and Field (2005) state that the only way to truly
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be able to predict the responses from a neuron is to measure the responses for every possible

stimulus. As this is not possible, natural images could be used instead. The reason is that

natural images match the real context the visual system processes, i.e. it is an ecologically

valid test. This argument for the use of natural images is taken one step further by the e�cient

coding hypothesis, which holds that the purpose of early visual processing is to produce an

e�cient representation of the incoming visual signal (Simoncelli, 2003). This implies that

because the sensory circuits evolved in a natural environment, they may be specifically tuned

for the e�cient coding of natural stimuli (Touryan & Dan, 2001). Natural stimuli have been

shown to be far from random, instead, they possess distinct properties (Simoncelli & Olshausen,

2001). Therefore, if the e�cient coding hypothesis holds true, natural stimuli could be essential

to gain insight into the underlying mechanisms of the human visual system. Given the above

reasoning, it is not clear whether insights on human edge perception that have been studied

with simplified gratings might translate to natural stimuli. Hence, the finding of Shapley and

Tolhurst (1973) and Schmittwilken and Maertens (2022b) that a narrow spatial scale of 3 cpd

is most informative about edges does not necessarily translate to natural images. Therefore,

complementary research with natural images is necessary.

1.3 Aim of Thesis

Edges are an important feature in our environment and edge detection is widely believed to be

an early stage of human visual processing. Since edges are classically studied with simplified

stimuli, it is not clear to which extent our knowledge about the underlying mechanisms of hu-

man edge perception translates to natural stimuli. Hence, we wanted to test edge perception

in natural images to draw conclusions about which spatial frequency contents are most impor-

tant for perceiving edges. However, while designing an experimental paradigm to investigate

this question, we came to realize that testing human edge perception in natural images is a

challenging task and that there is no standard approach for it yet. Hence, the aim of this

thesis became two-fold. First, we develop an approach to investigate human edge perception in

natural images. We test our approach using a similar noise-masking paradigm as Schmittwilken

and Maertens (2022b), however, we exchange their simplified stimuli with a natural image. In a

second step, we then use our approach to investigate whether spatial frequency contents around

3 cpd also play an important role for human edge perception in natural images.

4



1.4 Summary

In the experimental paradigm, the focus lies on contours (i.e. outlines of image contents)

instead of edges. Observers are instructed to segment contours in a self-created segmentation

tool. The resulting contour maps are then compared to a ground truth using a heuristic specified

by Grigorescu et al. (2003), resulting in a score indicating the quality of the segmentation. We

tested this paradigm in a laboratory environment. The basis for our stimuli are the images from

the natural image dataset of Grigorescu et al. (2003). One natural image masked with di↵erent

noises was presented over a range of contrasts. Through this, we hoped to find answers on the

e�cacy of the experimental design. We found that the use of ground truths for comparison is

valid and that the segmentation quality measure seems to match our perception of segmentation

quality. Image contrasts below 0.04 should not be used in our case and an error margin in the

segmentation quality measure changes results only quantitatively. Further, preliminary results

indicated that narrowband noise of 3 cpd and pink noise are most obstructing to contour

detection in natural images. Finally, we discussed the implications of these results.

5



2 Methods

In this section, we outline our experimental design. We begin by proposing and discussing the

experimental paradigm on edge perception in natural images in section 2.1. Then, we provide

details on how we apply this experimental paradigm specifically to our test case in section 2.2.

2.1 General Considerations

Since it is not clear how to design an experiment investigating edge perception using natural

images, we propose the following.

Instead of general edges, we focus on contours, i.e. the outlines of the image contents. The

observers are instructed to segment the contours in a stimulus using a self-created segmentation

tool. The resulting contour images are then compared to a ground truth with a similarity

measure. We discuss the di↵erent parts of the experimental paradigm in detail in the following

sections. We start by discussing a selection of natural images in section 2.1.1. We then explain

the participant’s task in detail in section 2.1.2. Finally, we delve into how this paradigm can

be implemented in sections 2.1.3 and 2.1.4.

2.1.1 In Search of a Natural Image Database

Our goal is to compare contour segmentations of a stimulus to a ground truth, i.e. a human-

labeled contour segmentation on the undistorted image. For this, it is necessary to have a

dataset that contains natural images and their corresponding contour maps. We examined

several datasets and ultimately selected one to utilize in the experiment. Natural image datasets

with human-drawn contour maps are Grigorescu et al. (2003), Li et al. (2019), and Martin et al.

(2001).

The Martin et al. (2001) dataset contains 300 grayscale and 300 color images of various sizes,

with multiple contour maps for each image. Additionally, a segmentation tool is provided with

it. However, a limitation of this dataset for our case is that the supplied contour maps solely

consist of closed contours, i.e. contours that share the same start and end point. This is an

issue for our purpose as it makes the segmentation very unintuitive, thereby increasing the time

required for the task. An example from this dataset displaying the problem is shown in Figure

3 (A).

The dataset by Li et al. (2019) contains 1000 color images of di↵erent dimensions, each image
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has 5 corresponding contour maps. What makes this dataset unfit in our case is that the

contour maps are just roughly edge aligned. This means that an edge present in the ground

truth may not necessarily correspond to an edge present in the image, which is undesirable in

our case. Figure 3 (B) shows an example from the dataset displaying the issue.

Figure 3: Example natural images from the di↵erent datasets with respective contour maps. In (A)

it is visible that the nose and the fingers of the woman are not traced, because only closed contours

could be segmented. In (B) the tracing of the dog is very rough and does not fit the actual contours

in the image. In (C) one example of an animal and a human made object is listed.

We use the dataset of Grigorescu et al. (2003). It consists of 40 images with respective contour

maps. Mostly, di↵erent animals in their natural environments are depicted with the addition

of some human-made objects. The images are all grayscale and 512⇥ 512 px in size. Examples

from the image dataset of Grigorescu et al. (2003) with their corresponding contour maps are

listed in Figure 3 (C). Although we decided to utilize this specific dataset, it is worth noting

that the other two datasets have the advantage of multiple contour maps per image, creating a

more representative benchmark for human contour perception. Having selected a natural image

dataset, we will discuss how to study edge detection in natural images in the next section.
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2.1.2 In Search of a Task

The study of edge perception typically involves using simple stimuli designed to elicit a strong

neural response from the visual system. These stimuli often contain a fixed number of edges

in a specific direction, e.g. gratings or bars (See Figure 2). A common experimental paradigm

using this type of stimulus is to present multiple of these stimuli to observers, who are then

asked to detect the presence of edges or their direction. An example of such an experiment is

the work by Schmittwilken and Maertens (2022b).

The same approach cannot be easily applied to natural stimuli, though, as it is debatable what

constitutes an edge in a natural image (Heath et al., 1998), especially to a human observer.

Therefore, we first need a clear definition of the term edge. This is not straightforward, because

a definition must not necessarily be functional for a human observer. Figure 4 (A) shows edges

as they are defined by a Canny edge detector. However, such a segmentation could not be

created by a human. To address this problem, we want to introduce the concept of contours as

defined by Grigorescu et al. (2003). They defined contours as a subset of edges specifying the

outlines of the image contents, not including edges originating from textured regions (Figure 4

(B)). As we have a strong intuition for what contours represent in an image (i.e. the outlines

of image contents), they are easily detected by an observer.

Still, it might not work if observers were just asked to indicate whether contours were present

in a stimulus, as the contours may be visible under di↵erent conditions. This is because a

multiplicity of contours exists in an image with di↵erent orientations and spatial scales. To

research contour perception in natural images the process of contour segmentation has been

used (Elder & Goldberg, 2002). This way, an observer traces the contours visible to them,

painting a more complete picture of their perception. Thus, we will present observers with

natural stimuli and will instruct them to segment the outlines of the image contents. For this,

we have created a segmentation tool, described in the following section.
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Figure 4: Comparison of edges and contours of a natural image from the database of Grigorescu

et al. (2003). To use edges edges as defined by the Canny edge detector would not be a good way

to probe human edge detection, as human observers could not segment an image this way.

2.1.3 Segmentation Tool

Our objective is to enable our observers to segment contours in natural images. To accomplish

this, we have developed our own segmentation tool, even though several tools already exist.

The rationale behind this decision was that the available tools tend to be too general and we

wanted to streamline the workflow for our specific experimental design. While developing our

segmentation tool, we have drawn inspiration from existing tools and conducted multiple trial-

and-error iterations to arrive at the following specifications.

Firstly, the tool should display the stimulus and allow participants to add visible contours on

top of it using the mouse. Secondly, participants should be able to click individual points to

add contours instead of having to free-draw, as drawing freehand can be challenging. For this,

we took inspiration from the segmented line tool in ImageJ2. Thirdly, the tool should have an

”undo” function that allows participants to remove painted contours without restarting the

entire trial. Finally, participants should be able to decide when they are finished, and the

resulting contour image should be saved to disk.

The segmentation tool is operated using a mouse and a 5-button controller. The workflow for

a single trial is as follows.

The stimulus is loaded from a mat file. The stimulus is accurately displayed at full size with its

predefined properties. The remaining screen is grayed out. The gray level is the mean of the

2https://imagej.nih.gov/ij/docs/tools.html
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displayed stimulus. Using the computer mouse the observer can mark the currently displayed

stimulus via a segmented line tool. Segmented lines are started and extended using the left

mouse button and ended with a right mouse click. The left button on the controller undoes

the last mouse click, removing either a line segment or the endpoint of a segmented line. If

the segmentation of one stimulus is finished, the current segmentation can be saved using the

center button of the controller. The next stimulus is shown afterward. If all stimuli have been

shown, the experiment exits.

The experiment outputs the saved segmentations and an output file. The segmentations are

saved as binary images, with black being the markings and white being the background. As

the contour maps from the natural image dataset are saved in the same manner, this allows for

easy comparison. For each shown stimulus the output file contains: A trial number, the used

image, the segmentation file, the mean and RMS-contrast of the stimulus, the RMS-contrast

and mean luminance of the image, the noise type, and the RMS-contrast and mean luminance

of the noise mask. An explanation of these values follows in section 2.2.2. Figure 5 shows a

segmentation with the tool and its output binary image.

Figure 5: Example Segmentation. (A) shows the segmentation in the segmentation tool. (B) shows

the resulting binary image.
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2.1.4 In Search of a Segmentation Quality Measure

Now that we have a way of segmenting the contours in the natural images from Grigorescu

et al. (2003), we need a way to measure the quality of a contour segmentation. We do this

by comparing the segmentations with ground truth. Ground truth is here approximated by

a human-labeled contour map on an undistorted image. Hence, a ground truth can either be

the contour maps of the dataset by Grigorescu et al. (2003) or any segmentation of the same

natural image, e.g. di↵erent trials of the same observer. However, for this, we further need a

way to quantify the similarity between a segmentation and a ground truth.

One way to quantify this could be to correlate both images. The Pearson correlation coe�cient

is a measure of linear correlation between two random variables and can be used to measure

how similar two signals are. It is defined as

⇢ = cov(X,Y )
�X�Y

,

where X and Y are random variables, cov() the covariance and � the standard deviation.

If both images are flattened, the resulting vectors can be correlated using the Pearson corre-

lation coe�cient. This results in a value between -1 and 1, with 1 being a complete match

between segmentation and ground truth and -1 for the segmentation being a negative of the

ground truth. A blank segmentation would yield a result of 0. Since the task is to trace con-

tours, which reflect the contents of the ground truth, a segmentation representing a negative

of the ground truth cannot realistically be expected and hence results vary between 0 and 1.

The segmentations of observers are not pixel-perfect, therefore even if an observer segments the

same edge as segmented in the ground truth, both will not necessarily align. This may pose a

problem because it results in a lower score, even if the right edge was segmented. Potentially,

producing inaccurate results.

Another approach to quantify the similarity between a segmentation and a ground truth is

described by Grigorescu et al., 2003. They define the following similarity measure:

P = |E|
|E|+|EFP |+|EFN |

Where E refers to the set of correctly segmented contour pixels, EFP to the set of contour

pixels present in the segmentation but not in the ground truth, and EFN to the ground truth
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pixels missed by the segmentation. We implemented this by looping through every pixel in the

images and checking the conditions for each set to create them.

The advantage of this similarity measure is that we can set a margin of error. As it is very hard

to do pixel-perfect, contour-aligned segmentations, an error margin has the benefit that results

with small inaccuracies are still classified as correct segmentations. This way, a lower similarity

score may not be caused by inaccuracies but by di↵erences in perception. We implemented

this as follows. First, we dilate both the ground truth and segmentation image by a factor.

Thereby, the lines marking the edges will get thicker in both cases. When now comparing the

not dilated images with the dilated ones, an error margin is introduced, as the segmentation

in the not eroded image may now overlap with the eroded ground truth and vice versa. The

error margin is the factor by which the images are dilated in pixels, e.g. with a factor of one, a

segmented pixel in the segmentation is evaluated as correct even if it is one pixel away from a

segmented pixel in the ground truth. From now on, we will refer to the process of comparing

a segmentation to a ground truth using the similarity measure by Grigorescu et al. (2003) as

the segmentation quality measure.

2.2 Test Case

After discussing some general considerations for an experimental paradigm on edge percep-

tion with natural images, we now explain in detail how we conducted our piloting procedure,

addressing the e�cacy of the experimental design and gathering preliminary data on edge per-

ception in natural images. For this, we begin by describing the apparatus in section 2.2.1.

Next, we describe the stimuli we used in section 2.2.2. Finally, explain our piloting procedure

and the questions we wanted to answer in section 2.2.3.

2.2.1 Lab Environment / Apparatus

The apparatus consisted of a 21-inch Siemens SMM2106LS monitor (400 × 300 mm, 1,024

× 768 px, 130 Hz), a headrest, a common computer mouse, and a 5-button controller. The

presentation was controlled with a DataPixx toolbox (Vpixx Technologies, Inc., Saint-Bruno,

QC, Canada) and the presentation software HRL3. HRL is a library for running high-resolution

3https://github.com/computational-psychology/hrl
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luminance experiments for psychophysics in Python. Unlike conventional computer monitors,

the Siemens SMM2106LS monitor converts images from intensity values to luminance values

linearly, i.e. the input values to the brightness values that the monitor physically emits. Ad-

ditionally, the lab can be entirely darkened so that the only light comes from the monitor.

This and the monitor both ensure that the stimuli are perceived at their intended luminance.

A headrest at a distance of 100 cm from the monitor ensures the correct spatial frequency

of the noises. The computer mouse and the 5-button controller (ResponsePixx button box,

VPixxTechnologies, Inc.) are provided as input devices.

2.2.2 Stimuli

The goal of this research is to pilot an experiment that can be used to study edge perception

in natural images and whether the findings from Schmittwilken and Maertens (2022b) and

Shapley and Tolhurst (1973) about edge perception, that a narrow spatial scale around 3 cpd

is most informative about edges, translates to natural images. To investigate the latter, we

propose a noise-masking paradigm, i.e. we present the natural images masked with di↵erent

kinds of noise.

For this, we use 6 di↵erent noise conditions and one control condition with no noise. We use

three kinds of narrowband noise to trace which spatial frequency contents are most relevant

for edge perception in natural images. These noises have center frequencies of 0.58, 3, and 9

cpd and a bandwidth of one octave, which is why we refer to them in the following as N0.58,

N3 and N9. In addition, we use three broadband noises white, pink, and brown noise. We

include those noises to test whether noises that cover a wide range of spatial frequencies a↵ect

edge perception in natural images in a di↵erent way, and hence to uncover potential nonlinear

e↵ects. Pink noise may be especially interesting as it models the frequency spectrum of natural

images (Kayser et al., 2006). The basis for all noises is pseudo-random white noise with equal

amplitude in all frequencies. For the narrowband noises, it is then band-pass filtered with a

Gaussian filter with one octave spatial frequency bandwidth and respective center frequency.

For the broadband noises, the amplitudes of the frequency components were divided by the

frequency for pink (1/f) and by the square of the frequency for brown (1/f²) noise.

All stimuli have a size of 12.8 x 12.8 deg at a viewing distance of one meter. Their mean

luminance is 100 with the image having a mean luminance of 100 and the noise having a mean

luminance of 0. The luminance range was between 22 and 182. We further define the RMS-
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contrasts of the image and the noise. The RMS-contrast is the standard deviation divided by

the mean. This enables us to control how visible the contours in the natural images are by

changing their contrast (i.e. a higher image contrast would lead to more visible contours) or

by changing the contrast of the noises (i.e. a higher noise contrast would lead to less visible

contours). However, it is not clear how both the noise and image contrast should be chosen.

Therefore, we first tested what a good value for the image contrast is. For this, we presented

one randomly selected stimulus to one observer over a range of contrasts. The noise contrast

was fixed at 0.15 and the image contrast was in a range between 0.01 and 0.09 with steps of

0.01 in between. The observer was instructed to segment the outlines of the image contents

(2.1.2). The image contrast 0.01 should reflect floor performance (i.e. no visible contours) and

0.09 should reflect ceiling performance (i.e. noise does not hinder contour perception). For this

piloting procedure, we used 63 stimuli (1 image · 7 noise conditions · 9 contrasts), which took

the observer 2 sessions of approximately 2 hours to complete. Examples of these stimuli are

listed in Figure 6.

2.2.3 Testing the Experimental Procedure

As previously mentioned, there are many things to consider if one wants to study vision with

natural stimuli. We have developed an experimental paradigm with which contour perception

in natural images can be measured and quantified. However, there were still some challenges

and open questions that we needed to address before performing an actual experiment. These

challenges summarized are, (1) whether the experiment works as intended, (2) what are ap-

propriate contrasts, (3) and the relevance of the error margin in the measure of segmentation

quality. To answer these we used the segmentations gathered in piloting (Section 2.2.2).

Due to the use of a new experimental paradigm, we are unable to predict its e�cacy. To gain an

idea of its potential, we compared the segmentations with the ground truths from Grigorescu

et al. (2003) and the segmentations of the noiseless conditions as a ground truth. Our aim

was to determine whether the scores of the segmentation quality measure match our percep-

tion of the similarity between two segmentations. Further, we wanted to test the similarity

of segmentations from di↵erent trials. If the selection of contours varies too much between

trials, di↵erences in segmentation quality could solely be due to inconsistent selections. To

examine this and to gain insight into the consistency between di↵erent trials, we first tested

the similarity between the no-noise conditions of the segmentations qualitatively. Then, we

14



compared the similarity between two segmentations qualitatively and then quantified this with

the segmentation quality measure. We compared the segmentations with the ground truth of

Grigorescu et al. (2003) and with the segmentations of the no-noise condition with the same

contrast. Next, we will address the open question of determining appropriate contrasts as al-

ready mentioned in section 2.2.2. As both the image and noise contrast influence the visibility

of contours, they are important variables. To find good values for the image contrast, we here

have fixed the noise contrast at 0.15 and varied the image contrast between 0.01 and 0.09 with

steps of 0.01 in between.

In theory, contours do not have a thickness. However, if we extract contours by drawing them,

these drawings will come with a thickness. This thickness could be chosen arbitrarily. If chosen

very small, it is very unlikely that a segmentation will overlap with the ground truth because a

pixel-perfect segmentation is hard to do for humans. In the segmentation quality measure, we

take this into account through an error margin parameter. In a first attempt, we have chosen a

value of 5 px as suggested by Grigorescu et al. (2003). However, we did not know whether this

value also works with our segmentation data. Additionally, we wanted to see the influence of

the exact parameter value on the final result. Hence we have varied it and looked at how the

results change. We used three values for the error margin: (1) 0 px, (2) 5 px (Grigorescu et al.,

2003), (3) 25 px (As 5 percent of the image size, is already pretty large). To further analyze

whether qualitative di↵erences exist, we computed Spearman’s rank correlation coe�cient be-

tween the results with the di↵erent error margin parameters. The Spearman rank correlation

can be used to calculate the correlation between data of unknown distributions. A result of 1

would be a perfect positive correlation, -1 a perfect negative correlation, and 0 no correlation.

Based on Zar (2005) the Spearman rank correlation can be computed as ⇢ =
6
P

d2i
n(n2�1) , where

di = R(Xi)� R(Yi) is the di↵erence between the two ranks of each measurement and n is the

number of measurements.
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Figure 6: Examples of the stimuli used in the experiment. A natural image is masked with either

N0.58, N3, N9, brown, pink or white noise. Additionally, a control condition with no-noise exists.

In these demonstrations, we used the same image and noise contrast for all stimuli.
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3 Results

3.1 Quantifying Segmentation Quality

Figure 7: The segmentations of the no-noise conditions over all 9 contrasts layered on top of each

other. The observer seems consistent in their selection of contours.

We have created an experimental paradigm to test human edge perception in natural images.

To assess the e�cacy of this paradigm we compare our piloting data qualitatively and then

quantitatively using the segmentation quality measure. Figure 7 shows the segmentations of

the 9 no-noise conditions from our piloting procedure layered on top of each other. Most

lines have been drawn multiple times, with only a few single lines being visible. Hence, the

observer seems to be consistent in their selection of contours between di↵erent trials. Figure

8 shows three example segmentations of noise conditions compared with the ground truths

from Grigorescu et al. (2003) and no-noise conditions with the same contrast. Qualitatively,

it is visible that the segmentations in the brown noise condition (Figure 8, rightmost image)

are pretty similar to both the Grigorescu ground truth and the segmentation of the no-noise

condition. Hence, we consider this to be a good segmentation which is also reflected in a high

segmentation quality score (0.422 compared to Grigorescu ground truth and 0.498 compared

to no-noise segmentation). Compared to that, we see that both the subjective quality of the

segmentations as well as the segmentation quality scores are lower in the white noise condition

(Figure 8, center image; scores 0.2 and 0.305), and worst in the N3 condition (Figure 8, leftmost

image; scores 0.053 and 0.087). The scores resulting from a comparison with the Grigorescu
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ground truth are similar to the no-noise condition scores. They follow the same order as the

no-noise condition scores but tend to be lower.

Figure 8: Comparison of noise condition segmentations (red) with Grigorescu ground truth (green)

and the no-noise condition of the same contrast (blue). Below each image, the scores of the

segmentation quality measure are listed. One for the comparison with the Grigorescu ground truth

(GT) and one for comparison with the no-noise condition (no-noise). Below the scores, the contour

maps are listed for each outline described by noise type and contrast or Grigorescu GT for the ground

truths from the Grigorescu dataset.

3.2 The E↵ect of Image Contrast on Segmentation Quality

As a first step, we wanted to test the influence of the image contrast on the visibility of contours.

Here, we quantified this by testing the e↵ect of the image contrast on the segmentation quality.

Further, we wanted to see whether the same e↵ect as found by Schmittwilken and Maertens

(2022b) translates to natural images, namely that pink noise and N3 noise interfere most with

human edge perception. Figure 9 shows the segmentation quality scores over the contrasts for

each noise type, using the Grigorescu et al. (2003) ground truth. Each line represents a specific

noise condition. The x-value is the range of contrasts (0.01-0.09). The y-value is the result of

comparing the stimulus with the contour maps as a ground truth using the segmentation quality

measure. The segmentation quality of all noise conditions increases with higher contrast. The

segmentation quality value of all conditions except pink and N3 shows a steep increase for

contrast values between 0.01 and 0.06, thereafter increments are smaller. For pink and N3 no

contours were segmented until a contrast of 0.04. Thereafter, segmentation quality increases
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slowly. Starting at a contrast of 0.02, a clear separation of the other noise conditions is visible.

Pink noise has the overall lowest segmentation quality score closely followed by N3. The order

thereafter is White, N9, N0.58, Brown and None.

Figure 9: Results of the segmentation quality measure over the contrasts for each noise type, using

the Grigorescu et al. (2003) ground truth and an error margin of 5 px.

3.3 The E↵ect of Di↵erent Error Margins on Segmentation Quality

In order to quantify the e↵ect of the error margin on the segmentation quality score, we varied

the error margin between 0, 5, and 25 px. Figure 10 shows a similar plot as Figure 9 but

with a di↵erent error margin for each column. We find that the curves look visually similar

between the di↵erent error margins. The noises are in the same order and the increase in the

segmentation quality scores looks similar overall. However, the segmentation quality seems to

correlate with the error margin resulting in higher segmentation quality scores with greater

error margin values. For an error margin of 0, 5, and 25 the segmentation quality range is

between 0 and 0.2, 0 and 0.4, and 0 and 0.8 respectively.

The results of the Spearman rank correlation are 0.995, 0.977, and 0.986 between error margins

of 0 and 5, 0 and 25, and 5 and 25 respectively. Hence, the data across all error margins has a

strong positive correlation.
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Figure 10: Results of the segmentation quality measure over the contrasts for each noise type, with

the Grigorescu et al. (2003) ground truth. Each column uses a di↵erent error margin.

4 Discussion

Edges are important features of our environment and are widely believed to be a first step

in human visual processing. Evidence has accumulated that edge detection may be mediated

by a narrow spatial scale around 3 cpd (Betz et al., 2015; Schmittwilken & Maertens, 2022b;

Shapley & Tolhurst, 1973). However, this has only been confirmed using simplified stimuli.

As these simplified stimuli do not necessarily unveil the inner workings of the human visual

system (Olshausen & Field, 2005; Simoncelli, 2003; Touryan & Dan, 2001), complementary re-

search using natural stimuli is necessary. However, while designing an experimental paradigm

to investigate this question, we came to realize that testing human edge perception in natural

images is a challenging task and that there is no standard approach for it yet. Hence, the aim

of this thesis became two-fold. Firstly, we developed an approach to investigate human edge

perception in natural images. For this, we proposed the task of contour segmentation. We

quantified the quality of a contour segmentation by comparing it to a ground truth using a

similarity heuristic specified by Grigorescu et al. (2003). Secondly, we wanted to investigate

whether spatial frequency contents around 3 cpd also play an important role for human edge

perception in natural images. For this, we used a similar noise-masking paradigm as Schmit-

twilken and Maertens (2022b), however, we applied this procedure to natural images. We then

tested the experimental design using a noise-masked natural stimulus over a range of di↵erent

contrasts, gathering data to answer the following: (1) How e�cient is the experimental design?

(2) What is an optimal noise contrast? (3) What is the influence of the error margin on the

results?
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We found that observers seem to be consistent in their selection of contours between di↵erent

trials. The segmentation quality measure seems to match our perception of the quality of a

segmentation. The scores of the segmentation quality measure are similar when comparing a

segmentation to the segmentation of its no-noise condition and the ground truth maps from

the dataset of Grigorescu et al. (2003).

The image contrast seems to have a strong influence on the results as the segmentation quality

score correlates positively with the contrast. While we found that a wide range of image

contrasts seem suitable for our specific noise-masking paradigm, contrasts below 0.04 should

not be used because no contours could be segmented for the pink and 3 cpd noise conditions.

For the error margin, we found that the results for di↵erent values look qualitatively similar.

This is supported by the almost perfectly positive Spearman rank correlation coe�cients.

We will discuss these results and their implications on the experimental design in the following.

4.0.1 Validity of Experimental Paradigm

In this thesis, we have developed a method to test edge detection in natural images. The focus

lies on contours which are defined as a subset of edges specifying the outlines of the image

contents, not including edges originating from textured region. The reason for this is that it is

not clear what an edge is in a natural image (Figure 4). Vision research on contours in natural

images has been carried out using di↵erent approaches. Geisler and Perry (2009) used a contour

occlusion principle, where parts of a contour were occluded and the task was to repaint them.

As contours are occluded, this approach cannot be used to study contour detection. Another

way to test contours is mentioned by Peters et al. (2005), they first show a natural image and

then present an observer with an image of a segmented contour. The task is to judge whether

the contour was present in the natural image. However, this may just give a small overview of

contour perception as contours are diverse in their spatial scale and orientation and just one

contour is tested for each image. We decided to segment contours in an image as employed

by Elder and Goldberg (2002). Therefore, our experimental paradigm is based on the task of

contour segmentation for research on edges in natural images. To measure the quality of a

segmentation we decided to compare it with ground truth, as this seems to be a reliable way

(if possible) to measure segmentation quality (Grigorescu et al., 2003; Huang & Dom, 1995).

We approximate ground truth with human-labeled contour maps, which are either no-noise

segmentations of the same observer or the ground truths by Grigorescu et al. (2003) The scores
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of the defined segmentation quality measure match our perception of the similarity between

two contour maps (Figure 8) for both a comparison with Grigorescu ground truths and no-noise

segmentations.

Comparing all no-noise segmentations, we found that the one observer that we tested seems to

be consistent in their selection of contours (Figure 7). This consistency is coherent with the

results by Martin et al. (2001) on closed contours. As all the data is gathered by one observer

on one image, and the observer seems consistent on this one image this validates using no-noise

segmentations as ground truth in this case. If the same holds true for multiple observers and

di↵erent images, using no-noise segmentations of the same user as ground truth is a generally

valid procedure because di↵erences in segmentation can be mostly attributed to distortions of

the image not inconsistencies in the selection of contours by one observer.

Since our data is currently limited to only a single observer, we could not quantify the similar-

ity between di↵erent observers. As di↵erent observers could vary strongly in their selection of

contours, this might be a limitation for using extraneous ground truths such as the Grigorescu

et al. (2003) contour maps. Hence, it might have been favorable to analyze the contrast and

error margin with no-noise conditions serving as ground truth. However, we compared the

scores of the segmentation quality measure between di↵erent segmentations of noise conditions

with either the no-noise condition or the Grigorescu contour map serving as a ground truth

for three examples (Figure 8). In those cases both results are similar. For our procedure, this

may be a qualitative argument for the use of the Grigorescu contour maps as ground truths.

This is supported by Martin et al. (2001), as they measured the consistency of closed contour

segmentations between di↵erent observers and found that they were highly consistent. How-

ever, to further validate the use of the Grigorescu ground truths or more generally extraneous

contours, the interobserver variability would need to be measured.

Additionally, di↵erent noises and contrasts may influence other images di↵erently. As has been

shown natural image statistics are not entirely constant (Field & Brady, 1997), therefore using

a range of di↵erent stimuli is important because results could be di↵erent for varying images.

For these reasons, an experiment with multiple participants and a range of di↵erent stimuli

would be vital. A range of stimuli would need to be selected. Especially, as di↵erent partici-

pants may judge contours di↵erently. The results by Martin et al. (2001) indicate otherwise,

but they segmented closed contours arguably leaving less room for error. Consequently, pro-

viding multiple contour maps per image to have a more representative human benchmark may
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be beneficial (Li et al., 2019; Martin et al., 2001).

Here we also want to mention that other experimental paradigms may have been possible with

other advantages and disadvantages. For example, the spatial frequency of narrowband noise

masks could have been varied by an observer until they perceived the strongest edge masking

e↵ect. This has the benefit that the spatial frequency response could be measured more accu-

rately. However, it may also be complicated to test broadband e↵ects with such a paradigm.

To test edge perception in natural images further, it may generally be advantageous to employ

a range of di↵erent methods. However, a definitive benefit of our approach is that we create

contour maps of natural stimuli under di↵erent conditions. These could be used for further

research, for example as a benchmark for physiologically inspired contour detection models

(Grigorescu et al., 2003; Schmittwilken & Maertens, 2022a).

4.0.2 Choosing the Right Image Contrast

In our specific noise-masking paradigm, one open question was which contrast should be used,

as the contrast influences the visibility of contours. If the contrast is too low no contours are

visible, if the contrast is too high the contours are equally visible in every noise condition.

Hence, it is important to find an appropriate contrast. As we define the contrast for the noise

and image separately, in a first step we fixed the RMS-contrast of the noise at 0.15 cpd and

the RMS-contrast of the image contrast varied between 0.01 and 0.09 with steps of 0.01 in

between. Our results indicated that an image contrast below 0.04 should not be used with the

noise masking paradigm we employed. In theory, one should also avoid that all contours are

visible in all conditions. However, given the image contrast that we piloted, we found that we

never reached ceiling performance (i.e. the noise is not hindering the segmentation), therefore

a wide range of image contrasts seems possible to use. If one wants to plot psychometric

curves (e.g. Figure 9) for all noise conditions, it would be desirable to have trials in which

the observer does not see the contours in the image, and trials in which the observer sees all

contours in the image and hence is at ceiling performance. Even though we tried a wide range

of image contrasts, none of the image contrasts that we used was high enough to result in

ceiling performance. However, in our specific case we could not increase the image contrast

anymore, because that would have meant that some of the luminance values of our images

would have been outside the range of luminance values that we could display on our monitor.

One alternative that we did not test in our paradigm would be to reduce the noise contrast,
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rather than increase the image contrast. To test which noise contrasts could be used, the image

contrast should be fixed at 0.09 and the noise contrast lowered stepwise, thus increasing the

overall contrast.

4.0.3 The Relevance of an Error Margin

To test edge perception in natural images we proposed the task of contour segmentation, where

an observer is instructed to segment the outlines of the image contents in an image. However,

doing these segmentations it can be di�cult to trace a contour completely pixel-perfect. Hence,

a valid tracing is scored as wrong by the segmentation quality measure we used. This may not

be desirable as a low segmentation quality score could be only due to inaccurate tracings and

not less visible contours. Therefore, we take this into account with an error margin. Testing this

parameter we wanted to find out, what error margin to use and whether the changes in scores

are of qualitative nature. Comparing the results visually we found that in our test case, the

di↵erent error margins did not change the results with respect to the question of edge detection

performance. The noises were in the same order and the increase in the segmentation quality

scores looked similar overall (Figure 10). The results of the Spearman rank correlation were

0.995, 0.977, and 0.986 between error margins of 0 and 5, 0 and 25, and 5 and 25 respectively,

i.e. almost perfect. This further implies that no qualitative di↵erences are introduced by the

error margin. This means it is not necessary to use an error margin to be able to quantify the

results with the segmentation quality measure. However, it can be used to scale the results.

Hence, choosing an error margin that reflects the human perception of similarity the most could

be sensible. For us, it was a margin of 5 px between the 3 tested margins in this case.

4.0.4 The Relevance of 3 Cpd for Edge Perception in Natural Scenes

Despite the small sample size, we attempted to draw preliminary conclusions on the overarching

question behind this project, whether edge perception is mediated by a narrow spatial scale of

3 cpd. We have found that narrowband noise of 3 cpd and pink noise, were most obstructing

to contour segmentation in our piloting procedure. We discuss the implications of this in the

following.

The purpose and functionality of early human visual processing are a topic of frequent discus-

sion. There is evidence that processing seems to rely on multiscale mechanisms (Elder & Sachs,

2004). In a multiscale system, the visual input is processed at di↵erent levels of detail (i.e.
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spatial scales) as opposed to a single-scale system. Prior work implied that the visual system

does not rely on the full range of spatial scales to solve one problem (Betz et al., 2015; Solomon

& Pelli, 1994). This is important as a multiscale system with no subsequent scale-specific pro-

cessing would not di↵er from a single-scale system (Schmittwilken & Maertens, 2022a). Edge

detection as researched on simplified stimuli has been indicated to be mediated by a narrow

spatial scale around 3 cpd (Betz et al., 2015; Schmittwilken & Maertens, 2022b; Shapley &

Lennie, 1985). Our results support this notion as we showed that noise of a narrow spatial

scale of 3 cpd e↵ectively hinders contour segmentation in natural images in comparison to the

other tested conditions, implying that image components of 3 cpd are of special importance for

edge detection. As a narrow spatial scale seems important for edge detection, our results are

compatible with the idea of a multiscale filtering model.

We also reproduce the result found by Schmittwilken and Maertens (2022b) that pink noise was

very e↵ective in masking edges. This is interesting as pink noise is not narrowband but broad-

band with a power spectrum of 1/f . This implies that mechanisms are at work that respond

to a larger bandwidth. Assuming, that the human visual system is multiscale with multiple

frequency channels, there is evidence that the bandwidth of these channels might follow a 1/f

distribution (O’Hare & Hibbard, 2011). This means that every channel is stimulated equally

with a stimulus of a 1/f power spectrum (McDonald & Tadmor, 2006).

As contours are suppressed by pink noise inhibitive processes might be at work. McDonald and

Tadmor (2006) implied that maximal suppression may occur when the population of neurons

in V1 is stimulated equally. Hansen and Hess (2012) also suggested that noise with a frequency

spectrum of 1/f might be obstructing to the detection of features in an image. Assuming a

multiscale characteristic of the human visual system, they concluded that this e↵ect may be

explicable based on contrast gain control, where responses of one neuron are inhibited by a

pool among di↵erent spatial frequency-sensitive channels. These pools dynamically adapt the

neuron’s contrast response function to the ambient contrast of the environment (McDonald

& Tadmor, 2006). As pink (1/f) noise optimally stimulates these channels, the suppression

is maximal. Other studies came to a similar conclusion (Haun & Essock, 2010; McDonald &

Tadmor, 2006). However, this does not fully explain our results because in natural stimuli

contours are already embedded in a 1/f environment. Since, natural images do not have the

same contrast across the whole image, in a neighboring region of a contour the contrast may

be lower. Indeed it has been shown that high-contrast patches in natural images are sparsely
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(non-Gaussian) distributed (Lee et al., 2003). The contrast across the noise masks seems more

constant though, which makes sense as they are based on filtered Gaussian white noise. If the

inhibitive neural pooling just happens across a certain neighboring region, this may possibly

explain why pink (1/f) noise still has this masking e↵ect in natural images.

4.0.5 Conclusion

Edges are vital visual features in our environment and are believed to play a significant role in

human visual processing. Evidence suggests that edge detection is mediated by a narrow spatial

scale around 3 cpd, but most research has been limited to simplified stimuli, i.e. isolated edges.

To gain a deeper understanding of the visual system, we need complementary research using

natural stimuli. However, as there is no standard approach for testing human edge perception in

natural images, in this thesis we (1) developed and evaluated a method for testing human edge

perception in natural scenes and (2) investigated whether human edge perception in natural

scenes is similarly a↵ected by noises that interfere with spatial frequency contents around 3

cpd as is the case for isolated edges. Our approach involves a contour segmentation task,

where participants segment outlines of image contents in natural images using a self-created

tool. To assess the quality of our method and human performance, we compared the resulting

segmentation maps with a ground truth using a similarity heuristic. Assessing our method,

first results indicated that our approach seems to be valid and e↵ective to test edge perception

in natural images. Consistent with prior literature, we found that also for more naturalistic

stimuli, edge perception deteriorates most when interfering with image contents at a spatial

scale of 3 cpd. However, data on the noise contrast is missing and the general limitations of a

narrow test case apply.

The implications of the piloting data on visual processing complement prior literature. Hence

using our experimental paradigm for research on human edge detection in natural stimuli could

prove to be insightful.
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