
Technische Universität Berlin

Fakultät IV - Elektrotechnik und Informatik

Dept. Computational Psychology

Bachelorarbeit

Reproducibility of Computational Studies:

Replicating and Evaluating a Camouflage

Detection Algorithm

Marc Tukendorf

Matrikelnummer: 390845

14.06.2023

1. Gutachter/in: Prof. Dr. Marianne Maertens

2. Gutachter/in: Prof. Dr. Guillermo Gallego Bonet

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigenhändig

sowie ohne unerlaubte fremde Hilfe und ausschließlich unter Verwendung der

aufgeführten Quellen und Hilfsmittel angefertigt habe.

Berlin, den 14.06.2023

. .

Marc Tukendorf

Abstract

This thesis addresses the reproducibility of scientific work and shows the causes that

lead to low reproducibility in academic publications. It is also important to differentiate

between reproduction and replication of algorithms, which are also defined in this work.

In addition, criteria are presented that must be fulfilled to make a research reproducible.

To visualize the reproducibility of scientific work, a dissertation is used as an example.

This dissertation implements a camouflage detection algorithm. This algorithm returns

for a given image a numerical value, also called edge power, that indicates the detectabil-

ity of a circular object. For this dissertation, the criteria of a reproducible publication

will be applied and also a possible approach for replicating the camouflage detection

algorithm will be presented. Furthermore, the goal is to create a successful replication

of the algorithm. To ensure the validity and reliability of the replication, a diagnostic

tool combined with tests for each segment of the algorithm will be implemented in this

approach. After successfully replicating the camouflage detection algorithm, a final test

run with a large variability of input data is carried out and used to evaluate the replica-

tion. This evaluation will show that the edge power values will be the same as expected

from the original implementation.

Zusammenfassung

Diese Arbeit thematisiert die Reproduzierbarkeit von wissenschaftlichen Arbeiten und

zeigt die Ursachen auf, die zu einer geringen Reproduzierbarkeit von akademischen Pub-

likationen führen. Wichtig bei diesem Thema ist auch die Differenzierung zwischen

Reproduktion und Replikation von Algorithmen, die in dieser Arbeit ebenfalls definiert

werden. Zudem werden auch Kriterien vorgestellt, die erfüllt werden müssen, sodass

eine Publikation reproduzierbar ist. Um die Reproduzierbarkeit von wissenschaftlichen

Arbeiten zu visualisieren, wird hierfür eine Dissertation als Beispiel verwendet. Die Dis-

sertation beschreibt den Camouflage Detection Algorithmus. Der Algorithmus erzeugt

für ein gegebenes Bild, das ein rundes Objekt beinhaltet, einen numerischen Wert, auch

Edge Power genannt. Dieser Wert gibt an, wie gut das Objekt in einem Bild sichtbar

ist. Hierbei werden die Kriterien einer reproduzierbaren Publikation auf diese Arbeit

angewendet und ein möglicher Ansatz für die Replikation des Camouflage Detection

Algorithmus dargestellt. Zusätzlich wird eine erfolgreiche Replikation des Algorithmus

angestrebt. Um die Validität und Reliabilität der Replikation sicherzustellen, wird in

diesem Ansatz ein Diagnosetool kombiniert mit Tests für jedes Segment des Algorithmus

implementiert. Zudem wird nach Fertigstellung der Replikation ein finaler Testlauf mit

einer großen Variabilität an Input-Daten durchgeführt und anhand dessen die Replika-

tion evaluiert. Die Evaluierung wird zeigen, dass die Edge-Power-Werte wie erwartet

den Werten aus der originalen Implementierung entsprechen.

Acknowledgements

I wish to thank my supervisor, Marianne Maertens, for their great support when writing

my thesis.

I also want to thank my family and friends for supporting and accompanying me along

the way to my first academic milestone. Specially I want to thank Dana Tukendorf,

Martina Pausch, Cedric Pausch and also to Viktoria Bill and Johannes Tabeling.

Contents

1 Introduction 1

1.1 Problem Statement . 1

1.2 Goal of the Thesis . 2

1.3 Outline . 2

2 Background 5

2.1 Reproducibility Computational Studies . 5

2.1.1 Reproducibility vs. Replicability 5

2.1.2 Criteria for Reproducible Studies 5

2.2 Camouflage Detection Algorithm . 8

3 Replication of the Camouflage Detection Algorithm 13

3.1 Approach for Replicating the Algorithm 13

3.2 Replication of the Source Code . 14

3.2.1 Diagnostic Tool for Evaluation . 15

3.2.2 Unit Test Setup . 18

3.3 Large-Scale Test . 19

4 Evaluating the Replicated Camouflage Detection Algorithm 23

4.1 Challenges during the Translation Process 23

4.2 Results of Diagnostics Tool After Translation 25

4.3 Evaluation of Unit Tests and Diagnostics Tool Results 28

4.4 Large-Scale Test Evaluation of the Replication 36

ix

5 Conclusion and Outlook 39

5.1 Conclusion . 39

5.2 Outlook and Future Research Opportunities 39

5.2.1 Extension of the current Camouflage Detection Algorithm 39

5.2.2 Algorithm for Edge Detection . 40

References 41

Appendix 43

1 Introduction

1.1 Problem Statement

Scientific publications in computer science include computations of various kinds. How-

ever, also many other disciplines nowadays critically depend on large-scale computations

e.g., computational neuroscience, computational biology and computational psychology

to name a few. Especially when we look into the field of image processing in compu-

tational psychology, the results of such computations have the goal of quantifying the

human visual system.

But many scientific publications do not provide all the information which is needed to

reproduce the experiment or computation. Especially for computational studies, the

research papers additionally need to contain significant content related to the presented

algorithms. This makes it a difficult task to create a replication that is capable of pro-

viding the same or similar result as the original computation.

There are many reasons for the lack of information. Kovac (2007) names cultural, ed-

ucational and collaborative issues but also data issues and intellectual property issues

as the problems that need to be considered and minimized to achieve a reproducible

research. This will be described more in detail in Section 2.1.2.

These issues contribute to the replication crisis in science, which is described in Rougier

et al. (2017). The case study from Vandewalle, Kovačević, and Vetterli (2019) visualizes

the replication crisis. It analyzed the reproducibility of 134 different papers published

in IEEE Transactions on Image Processing in 2004. The results of the case study can be

seen in Table 1 of Figure 1.1. Only nine percent of the papers published their code, 33

percent contained pseudocode for the described algorithms and only 33 percent had their

data set available online to name a few criteria they used to measure the reproducibility

of the papers. This shows how hard it is to reproduce a computational study because

there is a high chance that a given publication does not have all the information needed.

1

1 Introduction

Figure 1.1: Results of a case study which evaluated 134 different papers, which were

published in IEEE Transactions on Image Processing in 2004. This table

shows different criteria that needs to be fulfilled for a reproducible research

and shows the average scores that the papers received for each criterion.

Source: (Vandewalle et al., 2019).

1.2 Goal of the Thesis

In this thesis, I will address the reason for the replication crisis and describe the criteria

that needs to be fulfilled to achieve a high reproducibility on scientific publications. I

will also provide a method on how to replicate and evaluate a scientific publication.

The dissertation ”Camouflage Detection & Signal Discrimination: Theory, Methods &

Experiments” by Abhranil Das (2022) will serve as an example for a scientific publication.

It describes an algorithm which quantifies the human’s perception of objects in an image.

A detailed description is provided in Section 2.2. The goal is to successfully reproduce

this algorithm in Python. In my thesis, I will relate to this algorithm as the camouflage

detection algorithm.

1.3 Outline

This work will begin with an introduction into the background in chapter 2, which is

needed for the following chapters. Here, I will describe how reproducibility and repli-

cability in computational studies are defined and which criteria can be applied to a

scientific publication to identify the reproducibility of it. Afterwards, I will present the

camouflage detection algorithm.

In chapter 3, I will show the approach on how I will replicate the camouflage detection

algorithm. To validate the replication, I created unit tests for each function in the algo-

rithm and implemented a diagnostic tool. These two methods are used to improve the

replication and to finally achieve a valid and reliable replication. To test the replication,

2

1.3 Outline

a large-scale test will be made after finalizing the replication to verify the validity on

a large data set. Next, the implementation of the approach discussed in the previous

chapter will be evaluated in chapter 4. First, the challenges that occurred during the

process of replicating the algorithm will be covered. Furthermore, the result of the unit

tests and diagnostic tool runs will be presented and the large-scale test will be evaluated.

Finally, the chapter 5 will summarize this thesis and describe what can be concluded

from it. Additionally, an outlook for future research opportunities will be provided.

3

1 Introduction

4

2 Background

2.1 Reproducibility Computational Studies

2.1.1 Reproducibility vs. Replicability

The terms reproduction and replication do not have a common definition. Each re-

search area has a different understanding of what reproduction and replication mean.

Furthermore, the environmental context, in which they conduct their experiments or

computations, and the methods employed in scientific publications have a significant

impact on these definitions (Fidler & Wilcox, 2021). In my thesis, I will use the defini-

tion from Rougier et al. (2017).

Reproducibility is defined as using the same software that was used in the original pub-

lication and running it under the same environmental setup. The goal is to receive the

same results as described in the publication. For that, the input data for the compu-

tation must be provided. According to this definition, reproduction of a computational

study does not require any own implementation.

Replicating a computational study, on the other hand, is about implementing a software

or algorithm based on for example pseudocode, block diagrams or a detailed description

that explains the algorithm (Rougier et al., 2017). The same definition applies when the

publication already contains code, and it requires translation into a different program-

ming language for personal purposes. Therefore, during the replication process we need

to make sure that the results of the original code matches the ones from the replication

or, depending on the use case, if the results are close enough to the original ones.

2.1.2 Criteria for Reproducible Studies

A scientific publication is considered as a reproducible research if three main criteria are

fulfilled. A reproducible research needs to contain a good explanation of the algorithm,

provide access to the code and need to make the data set available and described so

5

2 Background

that it can be used to compute the results (Vandewalle et al., 2019). Many computa-

tional research papers do not provide enough information on these three main criteria

to replicate the publication. There are multiple factors reducing the reproducibility of

a scientific research.

Kovac (2007) names cultural, educational and collaborative issues but also data issues

and intellectual property issues in the field of image processing. The cultural issues

describe that normally, reproducibility is not the main focus when publishing a scientific

work, while other factors such as the novelty of a paper have a higher value. This can

lead to the issue that known algorithms will be modified for specific use-cases to achieve

novelty. These modifications are seen as less prestigious in science, since novelty will be

prioritized over practical applications.

Furthermore, educational issues can also cause a lower prioritization of reproducibility,

since clear standards for code writing and sharing are missing. Specially when researchers

are working with data sets from external sources, it can lead to difficulties while obtain-

ing the permission to share the data set. This is also referred to as data issues. The same

problem arises when researchers are working together with companies or similar insti-

tutions, which do not want to make specific parts of their algorithm public. In general,

the ownership of algorithms and data sets makes the reproducibility of scientific work

more challenging. This is the focus of the intellectual property issues and collaborative

issues in Kovac (2007).

To visualize the reproducibility of a research, Vandewalle et al. (2019) created a list

of questions. These questions can also be seen as criteria that need to be fulfilled to

make a research reproducible. They were used to perform the case study described in

Section 1.1. The criteria are grouped into three main categories, the reproducibility of

algorithm, code and data set. The algorithm in a reproducible research requires exact

parameter values, block diagrams, pseudocode, and proof for all theorems. A sufficient

description of the algorithm is also required, as well as a comparison with other similar

algorithms. For the code, the implementation details, such as the programming lan-

guage, frameworks, libraries, etc., must be specified. Additionally, the code needs to be

published and be available online.

6

2.1 Reproducibility Computational Studies

Criteria Category Criteria for a Reproducible Research

Algorithm Detailed description

Parameter values

Block diagram

Pseudocode

Proofs

Comparison to other algorithms

Code Implementation details

Code availability

Data Data set explanation

Acceptable size of data set

Data availability

Table 2.1: This table represents the criteria for a reproducible research. The criteria are

divided into three main categories. The algorithm criteria, code criteria and

data criteria.

Similarly, the data must be available online and a sufficient description of it as well as

an acceptable data size must be provided. An acceptable data size is achieved, when

the data set is large enough so that it can be representative, but still small enough that

the computation can be done in a specific time frame. An overview of all criteria can be

seen in Table 2.1.

To apply the criteria to a research, points will be assigned for each criterion that indicates

whether the criterion is fulfilled or not. The points can be set to 0, 0.5, 1 or N/A, while

0 means that the criterion is not satisfied, 0.5 stands for a partially satisfied criterion

and 1 for a completely fulfilled one. N/A means that the criterion is not applicable,

which will be assigned if a specific criterion will not be taken into consideration for a

given research. According to this definition, a scientific publication can get a maximum

of 11 points. Reaching this amount of points means that a given scientific publication

is completely reproducible. These criteria will be applied to the Camouflage Detection

Algorithm described in Das (2022).

7

2 Background

2.2 Camouflage Detection Algorithm

The Camouflage Detection Algorithm (CDA) from Abhranil Das’ dissertation is an

algorithm which quantifies the visibility of a circular object that is placed in an image

by a numerical value. This value is also called edge power. To determine the edge power

for an image, the CDA takes the gradients across the edge of the object and computes

the edge power based on the lengths of these gradients. The edge power represents the

visibility of the object. An object with a high degree of visibility is associated with a

large edge power value.

Figure 2.1: This is an example stimulus for the Camouflage Detection Algorithm (CDA).

The Stimulus includes a pink noise background texture and hast a circular

target in the center of the stimulus, which has the same pink noise texture

as the background but rotated by 90 degrees.

The image can have any arbitrary, grayscale texture as background, as well as for the

object. The CDA only computes the edge power for circular objects. The background

texture combined with the object, which will be referred to as the target, form together

the stimulus. An example of a stimulus with a pink noise background texture and a

target with a different instance of a pink noise texture can be seen in the Figure 2.1. A

pink noise is a white noise which is filtered in its amplitude. Since natural images share

similarities in the amplitude spectrum with the pink noise, the pink noise is used as an

example texture for a camouflaged object (Das, 2022).

8

2.2 Camouflage Detection Algorithm

The Algorithm 1 represents the general structure of the CDA in pseudocode. The func-

tion that computes the edge power is also called edge power() and it takes three

additional arguments beside the stimulus. target radius defines the radius of the target,

which by default is set to 64. n edge is the amount of vectors returned by the inter-

polation of the target’s edge vectors. In the interpolation, the vectors are distributed

equally across the target’s edge. The kernel size specifies the size of the kernel used in

the steerable gradient filter.

Algorithm 1 Camouflage Detection Algorithm

function EdgePower(stim, target radius=64, n edge=1000, kernel size=[1,

3])

bg size = stim.shape[0]

target center = floor(bg size/2− 1) ∗ [1, 1]
theta array = theta field(bg size, target center)

(mask edge,mask normal) = circular target mask(bg size, target radius)

stim grad = steerable gradient(stim,kernel size)

target edge field = normalize gradients(stim, stim grad,mask normal)

th edge = filter and sort theta edge(theta array, target edge field,mask edge)

th edge warp = warp and create unique edge matrix(th edge)

target edge vector = interpolate(th edge warp,n edge)

target edge power = mean(target edge vector)

return (target edge power, target edge vector)

end function

The Algorithm 1 is already the function structure, which I implemented in the Python

replication. It is presented in this section, to provide a better understanding of the

algorithm. This structure is not present in the original code. As shown in the example

code snippet in Figure 2.2 most of the code is not separated into multiple functions.

The implementation is done in one single Matlab file, except for some functions like the

steerable grad() function. The following description of the algorithm is based on the

implementation of Das (2023). All the inputs and outputs of the functions can be seen

in a flow diagram in Figure 2.3.

First, the algorithm calls the function theta field(bg size, target center) which com-

putes an array that contains the polar angle of each point of a stimulus, called theta,

9

2 Background

Figure 2.2: This figure shows a code snippet from the original code. Here we can see

the part of the implementation which is covered by the steerable gradient(),

normalize gradients() and filter and sort theta edge() functions in the repli-

cation. Source: (Das, 2023)

with respect to the target’s center. These theta values from the theta field are later

on required in the interpolation step to equality distribute the edge vectors along the

target’s edge. To identify the target border, a binary mask is needed that represents it.

Furthermore, a mask for the normals lying on the target’s edge is required so that the

stimulus gradients in the further part of this algorithm can be normalized. This is done

by the circular target mask(bg size, target radius) function.

The crucial step happens in the steerable gradient(stim, kernel size) function. Here,

the steerable gradient filter is computed and applied to the stimulus. This filter gives us

a gradient for each pixel in the stimulus. The length of a gradient is the quantification of

the edge information. So with increasing gradient length, the visibility of the edge also

increases. With that, we already have all the information which is needed to compute

the edge power.

To get meaningful edge information out of the stimulus’ gradients, first the gradients need

to be normalized in the function normalize gradients(stim, stim grad, mask normal).

10

2.2 Camouflage Detection Algorithm

Next, the normalized gradients will be put together with their corresponding theta values

in the filter and sort theta edge(theta array, target edge field, mask edge) func-

tion. They will be filtered by the mask edge to retrieve the theta values and gradients

at the edge of the target.

At this moment, the edge gradients, also called edge vectors, are not evenly spread across

the target’s border since our image is defined in a pixel grid where we can’t describe a

perfect circle. To get equally distributed edge vectors, they need to be interpolated.

Therefore, the current array containing the theta values and edge vectors, called th edge,

will be wrapped on each side of theta in the warp and create unique edge matrix(

th edge) function. This means, it copies the gradients two times and the theta values

are being shifted by −2 ∗ π and +2 ∗ π and saved into the th edge array. This function

also removes all duplicated theta values from the array by averaging the edge vectors for

the multiple occurrences of theta. Thereafter, the interpolation can be applied to the

edge vectors with the function interpolate(th edge warp, n edge). From the resulting

target edge vector array, the edge power for the stimulus is computed by the mean of the

squared edge vectors.

11

2 Background

Figure 2.3: The figure visualizes the inputs and output of each function in the CDA.

The blue rectangles describe the input variable of the edge power() function.

The orange rectangles represent variables, which are computed outside the

functions. The green rectangles indicate the functions. All other variables

are visualized in an image or diagram, having their name at the top of each

of them. When a function has an ingoing arrow, the connected variable is

considered as one of the input variables. While outgoing arrows are leading

to the output variable. The returned edge power value of the algorithm is

represented by a red rectangle.12

3 Replication of the Camouflage Detection

Algorithm

3.1 Approach for Replicating the Algorithm

To reproduce the CDA I use as the base the dissertation ”Camouflage Detection & Signal

Discrimination: Theory, Methods & Experiments” by Abhranil Das (Das, 2022) and also

the poster from the Vision Sciences Society annual conference from May 2022 (Das &

Geisler, 2022), where the dissertation was presented. But both sources together are not

sufficient to reproduce the CDA. The poster provides a general overview of the topic

of camouflage detection and the core statements of the dissertation, which is helpful

for understanding how the CDA in works, but it does not provide any information for

fulfilling the criteria of a reproducible study. Since the goal of a poster is to provide an

audience a brief overview of a topic, it can be expected that for reproducing an algorithm

it won’t provide the necessary information.

The dissertation, on the other hand, contains more information about the CDA. Here, I

will apply the criteria for a reproducible research. The scores for each criterion can be

seen in Table 3.1. To achieve the goal of replicating the CDA, a proof of the theorems

and a comparison with other algorithms are not providing any information that could

be used for the replication. Furthermore, the criterion of having an acceptable size of

the data set and its availability is not relevant in this case, since the given explanation

of the data set is enough to reimplement the stimulus. With the given description, an

arbitrary amount of stimuli can be generated and used in the replication. That is why

all these criteria have their score set to N/A.

The dissertation provides a general description of how the algorithm works, which is

sufficient to understand what the idea of the algorithm. As previously mentioned, a

detailed description of the data set is also provided. These criteria received a score of

1 because of that. But to replicate the algorithm, more information like the parameter

13

3 Replication of the Camouflage Detection Algorithm

values, block diagrams and pseudocode needs to be provided. Unfortunately, they are

not in the dissertation. But the crucial point was the description of the steerable filter. It

was only described in words, and no functions or implementation details were provided

for it. That is why, with the given information, it was not possible to replicate the

algorithm.

Due to this fact, I requested the original code from the author of the dissertation. After

requesting the source code from the author, it was provided in Matlab. That is why both

code criteria received a score of 0.5 each since the code wasn’t available online before, but

it was provided after requesting it. Since the original task was to replicate the algorithm

in Python, the main goal became to extract the relevant parts of the source code and

reimplement it in Python.

Criteria Category Criteria for RR Score

Algorithm Detailed description 1

Parameter values 0

Block diagram 0

Pseudocode 0

Proofs N/A

Comparison to other algorithms N/A

Code Implementation details 0.5

Code availability 0.5

Data Data set explanation 1

Acceptable size of data set N/A

Data availability N/A

Table 3.1: In this table, the scores are applied to each criterion for the algorithm de-

scribed in the dissertation.

3.2 Replication of the Source Code

To assure that the replication is valid and reliable, I divide the replicated code into mul-

tiple segments according to their logical purpose. For each segment, I created a Python

method to test them individually. Since the tests will be used to verify the validity by

coverage testing, I also created a diagnostic tool, that will approve the reliability of the

14

3.2 Replication of the Source Code

Figure 3.1: Example stimulus for the first evaluation step of the diagnostics tool. The

stimulus is a pink noise background texture having a circular target.

replication. While the test will be only applied for a few stimuli, the diagnostic tool will

contain a lot larger number of stimuli.

The reason for it is that after the first step of translating the original Matlab code into

Python, the replication was not returning the correct edge power values as expected.

The tests are a way to go through each method and improve the code step by step. It

is better to test on a few stimuli, since the execution of some methods takes a relatively

long time to compute the results.

3.2.1 Diagnostic Tool for Evaluation

To assure the reliability of the replication, I created a diagnostics tool which gives me a

measurable value to define how reliable the replication is. Due to numerical approxima-

tions in some parts of the code and also because of some differences in the predefined

function in each programming language, the replication won’t return the same edge

power as the original code. The goal of the diagnostic tool is to generate a large set of

stimuli in different scenarios, compute the edge power with the replication and original

code and then compare them to see if the results are correlating. Furthermore, the

15

3 Replication of the Camouflage Detection Algorithm

Figure 3.2: Example stimuli for the second evaluation step of the diagnostics tool. Each

stimulus has a pink noise background texture with a circular target which is

rotated by a certain amount of degree.

diagnostic tool computes the mean square error (MSE). The MSE is described by

MSE =
X∑

x=0

(y − x)2, (3.1)

where X is the dataset containing the edge power values returned by the replicated code

in Python and y equals the expected value for edge power x, meaning that y is the

edge power returned by the original MATLAB code. The diagnostic tool contains three

evaluation steps. In the first step, I create 100 different stimuli. Each stimulus has fixed

parameters, except for the seed. This will create stimuli with a pink noise texture as

background with a size of 256 pixels and a circular target size of 64 pixels. The seed will

be set to the value of a counter which is initialized with one and will be increased by

one each iteration step up to 100. The seed ensures that the pink noise, which normally

is generated randomly, will be a fixed variation of the pink noise. An example stimulus

can be seen in Figure 3.1.

Then I iterate over all stimuli, compute the edge power with the original code and also

16

3.2 Replication of the Source Code

Figure 3.3: Example stimuli for the third evaluation step of the diagnostics tool. Each

stimulus contains a texture with 15 pixels wide horizontal lines and a circular

target which is rotated by a certain amount of degree.

with the replicated code, and then determine the MSE of the whole data set. Based on

the results, I created a diagram which has the edge power value from the original code

on the x-axis and the edge power values from the replication on the y-axis. If the results

from the replicated code will match the ones from the original code, they will lie on the

function y = x in the diagram.

In the second evaluation step of the diagnostic tool, I use a fixed stimulus where I will

alter the magnitude of rotation of the target. Therefore, the stimulus will contain a pink

noise texture as background with a size of 256 pixels, a circular target size of 64 pixels

and a constant seed (seed = 1). With this setup, I will create 360 different stimuli where

I will rotate the target around its center. Per iteration, I will increase the magnitude of

rotation by one degree starting at zero degree up to 360 degrees. Then, similar to the

first evaluation step, I will compute both edge power values and create a diagram where

I compare the reference values with the actual values, and also determine the MSE based

on the results. Some example stimuli for this diagnostic tool step can be seen in Figure

3.2.

17

3 Replication of the Camouflage Detection Algorithm

For the last evaluation step, I use the same method as in the second step. So, I will

also alter the magnitude of rotation of the target from zero to 360 degrees in one degree

intervals, but with a different background texture. The texture consists of 15 pixels

wide horizontal lines, where for each of them a random value between zero and one will

be assigned. In this diagnostic tool stage, I employ a different texture than before to

examine the possibility that some points at the edge may not have a visible border. For

this points, the gradients have a length of zero, which represents a borderline case.

Besides the texture, the remaining parameter will have the same values as in step two.

So, the stimulus will have a background with a size of 256 pixels, a circular target size of

64 pixels and a constant seed (seed = 1). Some example stimuli for this diagnostic tool

step can be seen in Figure 3.3. For evaluating the results, I will also determine the MSE

and visualize the results in a diagram, comparing the reference values with the actual

ones.

3.2.2 Unit Test Setup

After I finish implementing the CDA, I start to write the tests for validating the replica-

tion. The original code isn’t segmented into smaller functions, like it is in my replication.

To generate the test data, I need to add a function at the specific point in the Matlab

code, which writes the current state of the variables into a file. So, I added this function

at every line where the corresponding segment in my replication expects an input and

output. To give an example, one of my methods calculates the theta values for each pixel

in the stimuli. This means that I need to save the input stimulus as the input data for

the theta field() function, and also save the resulting theta field array at the line where

it will be computed. After this segment, the theta field array can be used as the input

data for the following functions.

To have a larger variety in the test data, I generate 10 random stimuli and create the

test data for them using the original Matlab code. This means that for each stimulus

I save the state of the variables to use them as input or output for my methods on the

tests, as it can be seen in Table 3.2.

Besides these methods, I am also testing the functions which I needed to implement by

myself since Matlab has some predefined functions that can’t be imported by any Python

modules. These functions are the filter2(), bwperim() and stdfilt(). For every function,

a definition and discussion on why they can’t be used in Python directly will be provided

18

3.3 Large-Scale Test

in Section 4.4. To test them, each function has their corresponding method in which

I implemented them. These tests have the aim to verify that my reimplementation of

them are returning valid results.

Filename of variable methods input methods output

stim.mat steerable gradient()

normalize gradients()

[indirectly theta field()

circular target mask()

-

theta field.mat filter and sort theta

edge()

theta field()

mask edge.mat filter and sort theta

edge()

circular target mask()

mask normal.mat normalize gradients() circular target mask()

stim grad.mat normalize gradients() steerable gradient()

target edge field.mat filter and sort theta

edge()

normalize gradients()

th edge.mat wrap and create unique

edge matrix()

filter and sort theta

edge()

th edge wrap.mat interpolate() wrap and create unique

edge matrix()

target edge vector.mat - edge power()

target edge power.mat - edge power()

Table 3.2: This table shows all the files, which I used to save the variable states in the

original code so that I can use them for testing of the different functions.

3.3 Large-Scale Test

After successfully assuring the validity and reliability of my replication, I will test my

replication on a large set of stimuli. This time the stimuli will be generated using

the stimupy library from Marianne Maertens, Lynn Schmittwilken and Joris Vincent

(Schmittwilken, Maertens, & Vincent, 2023). I will utilize the binary and narrowband

noise from the stimupy.noises module and also from the stimupy.noises.naturals I will

19

3 Replication of the Camouflage Detection Algorithm

use 1/f noise, pink noise and brown noise. For each of the five background textures, I will

generate 1000 random stimuli. Depending on the configuration options in the stimupy

library of each texture, the test setup will differ. For the binary, pink, and brown noise

texture, the test setup will be the same since they got the same configuration options.

For the 1000 stimuli, their size will be set to size ∈ [200, 400, ..., 1000] for every 100

stimuli. For each 100 stimuli having the same size, I will also alter the intensity range

(ir) according to ir ∈ [(0, 1), (0, 2), ..., (0, 10)] for every 10 stimuli.

Figure 3.4 shows three different example stimuli for each texture type having a different

configuration of the variables. The images A to C differ in their background size over

each texture type. Image A has a size of 200 pixels, while B has a size of 600 and C

a size of 1000 pixels. Additionally, the texture types of binary, pink and brown noise

vary in their intensity range. The images A have a range of (0,1), while the images

B have a range of (0, 5) and images C a range of (1, 10). The stimuli having the

narrowband texture also have a variation in their center frequency being 0.5, 0.75 and

1 for each stimulus A, B and C. The 1/f noise stimuli, on the other hand, have also

different exponent values, being 1 for image A, 1.5 for image B and 2 for image C. Since

the narrowband and one over f noise texture have more options that can be altered, for

these two texture types I will do the same size variation as for the other stimuli, but the

intensity ranges will be fixed at (0,1). For the narrowband noise texture, I will alter the

center frequency to cf ∈ [0.5, 1, 1.5, ..., 5] for every 10 stimuli, while for the one over f

noise texture, I will modify the exponent exp ∈ [1.0, 1.1, ..., 2] for every 10 stimuli. Some

example stimuli for each texture type can be seen in Figure 3.4.

In total, I will generate 5000 stimuli. For each of them I will compute the edge power by

using the original code and also by using my replication. Thereafter, I will compare the

results and compute the MSE to see if there are any differences. Both edge power values

from each implementation should ideally return the same values, which would lead to

an MSE of MSE = 0. The goal of the large-scale test is to assure the correctness of

the CDA and that it is returning the expected edge power values for each stimulus of a

large and diverse data set.

20

3.3 Large-Scale Test

Figure 3.4: Example stimuli from the data set used for the final larger-scale test. Each

row represents a different texture type. For each texture type, three different

variations are shown. 21

3 Replication of the Camouflage Detection Algorithm

22

4 Evaluating the Replicated Camouflage

Detection Algorithm

4.1 Challenges during the Translation Process

During the process of translating code from one programming language to another,

some challenges may occur. Some functions exist in one programming language, but

they are not implemented in the other one. An example of it would be the filter2() or

bwperim() function in Matlab. Each of these two functions provides examples of how

such a translation into python might work.

The first case is shown by the filter2() function, which is defined as

function filter2(C, I, shape) (4.1)

where I is an array representing the image as a matrix, C is the correlation template and

shape is a string indicating which information of the filtered data is used for the resulting

array. This function applies a filter on array I using the coefficients of matrix C and

returns the filtered array (Zhi & Jiang, 2017). In the camouflage detection algorithm, it

is used to apply the steerable filter on the stimulus to get the steerable gradients. So in

this case, C is the steerable filter and I is the input stimulus. The shape is set to ’same’.

This means that the central part of the filter is used for the resulting array. This way,

the result will have the same size as the array I (Gonzalez, Woods, & Eddins, 2009).

filter2() does not exist neither in Python nor in any common Python module like

NumPy, SciPy and similar packages and can’t be replicated directly. But this function

also has an alternative definition, which is described as:

function convolve2D(I, rotate180(C), shape) (4.2)

So filter2() can also be interpreted as the convolution of the image I, where the cor-

relation template array C is rotated by 180 degrees. Providing the same shape type as

23

4 Evaluating the Replicated Camouflage Detection Algorithm

in the filter2() function, both functions will return similar results.

Using equivalent functions is a simple way to reproduce code in another programming

language. But in some cases, it can happen that a function does not have any equivalent

functions. In these cases, the functions need to be implemented in the target program-

ming language, as it is the case for the bwperim() function used in the CDA. The

bwperim() is defined as:

function bwperim(I) (4.3)

This function computes an array containing the perimeter of a binary image I. Since

there is no implementation of this function in Python, I used the description of the

documentation as a base to replicate this function. According to the documentation in

The MathWorks, Inc. (2023), the bwperim() function is a filter which is applied to each

pixel. A pixel p at location x and y is defined as:

px,y =

1 if px,y = 1 and (px+1,y = 0 or px−1,y = 0 or px,y+1 = 0 or px,y−1 = 0)

0 otherwise

(4.4)

According to this definition, I replicated this function in Python.

There is also a third case which can occur during a translation process between two

programming languages. In this case, a function has a corresponding function in the

target programming language, but still needs some adjustments to reproduce the same

results. This applies for example to the stdfilt() function from Matlab, which is defined

as:

function stdfilt(I, nhood) (4.5)

This function applies a local standard derivation using the kernel nhood, which is an

array with odd size in each dimension, and applies it on each pixel (Gonzalez et al.,

2009). I used the generic filter() function from the scipy.ndimage.filters module to

reproduce this function in Python. The generic filter() is defined as:

function generic filter(I, f , footprint) (4.6)

where a function f is applied on each pixel’s neighborhood in the array I, while the

neighborhood is specified in the footprint variable (The SciPy community, 2023). To

replicate the stdfilt() function, a standard derivation function needs to be set for the

function f, but the standard derivation can be computed in different ways. For example,

24

4.2 Results of Diagnostics Tool After Translation

in the official documentation of Matlab the standard derivation S of an array X where

xi ∈ X, µ equals the mean of X and N is the number of elements in X, is defined as:

S =

√√√√ 1

N − 1
∗

N∑
i=1

|xi − µ|2 (4.7)

In this equation the standard derivation is normalized by the factor N − 1. But there

are other definitions, like the one in Python’s NumPy Module, that uses only the factor

N instead of N − 1. To get the same results as in Matlab, I needed to implement a

standard derivation function that computes S like it is defined in Equation 4.7.

4.2 Results of Diagnostics Tool After Translation

After I finished the first version of the translation attempt, I used my diagnostic tool

to evaluate the reliability of my replication. To achieve a high reliability, the results

from both, the Matlab and Python implementation, need to match. Therefore, the MSE

should be zero. The diagnostic tool creates numerous amount of stimuli and computes

the edge power from my replication. It will also call the original code. Finally, the

results are compared by calculating the MSE like it is explained in Section 3.2.1 and the

resulting edge power values are visualized in a diagram.

In Figure 4.1 the results of the first diagnostic tool run are visualized. The first stage of

the diagnostic tool, like it is described in Section 3.2.1, generates 100 different stimuli

with a pink noise background and computes the edge power values from the original and

replicated code. In the first diagram, the 100 stimuli are displayed by taking their result-

ing edge power values from both CDA implementations. On the x-axis, the edge power

values from the original code are shown, while the edge power values from the replicated

code are displayed on the y-axis. In this diagram, two functions are shown. The orange

function shows the reference values. If the edge power value from my implementation

matches the one from the original code, it means that they would lie on the function

f(x) = x, which is represented by the reference values. The second function shows the

actual values computed by the diagnostic tool. We can see that they do not match ex-

pected values. The actual values are distributed near an edge power value of EP ≈ 4.3.

Furthermore, as the expected edge power values increases, my implementation does not

yield a correspondingly higher edge power value. This means that the results are not

correlating with the expected values. This leads to an MSE of around 1333.

25

4 Evaluating the Replicated Camouflage Detection Algorithm

Figure 4.1: These diagrams show the results of all three diagnostic tool stages for the

first execution. It shows that after the translation, the replication does not

return the expected edge power values and is not correlating with the correct

results.26

4.2 Results of Diagnostics Tool After Translation

The second stage of the diagnostic tool takes one stimulus with a pink noise background

and rotates the target around the target’s center. The rotation takes place in one degree

steps, and the edge power values from both implementations are computed for each step.

Furthermore, both results will be displayed in a diagram, similar to the middle diagram

in Figure 4.1. In the diagram, I plot the edge power values against the target orientation

by the degree angle to compare the results of the second diagnostic tool stage. I also

plotted three dotted lines which serve as a visual help to mark the rotation angles at 90,

180 and 270 degrees.

In the middle diagram in Figure 4.1, the orange function represents the results from the

Matlab implementation. Depending on the rotation magnitude from the original imple-

mentation we get edge power values which start at around EP ≈ 3 and with increasing

rotation magnitude they go up to nearly EP ≈ 6. This happens since the differences

between the target and the background can increase or decrease at the edge with each

rotation step. This depends on how the bright and dark areas of the background are

distributed by the pink noise texture. So if we rotate the target in a way that many

bright areas are located next to dark ones and vice versa, then we get a high edge power

like it is in the second diagnostic tool stage for the orientation x ≈ 58 and x ≈ 259.

And if these differences at the edge will get smaller again, the edge power will decrease

accordingly. This can be specially seen at the orientation points x = 0 and x = 360.

With no rotation of the target, it won’t be visible. That’s why the edge power is very

low at these points. We experience a strong edge power increase for the first rotation

angles and a strong decrease when coming closer again to the original stimulus after

rotating the target by a full 360 rotation. As shown in the middle diagram in Figure

4.1, this behaviour cannot be observed in the results of my replication. The results of

my replication are displayed by the blue function. The edge power is staying constant

at around 4.2 and is not correlating with the described curve progression of the orange

function. This deviation creates an MSE of 239.12.

In the last stage, the diagnostic tool is doing the same as in stage two, but this time

the line texture is used as the stimulus’ background. The diagram has the same axes

as in the previous diagram. The target’s orientation will be on the x-axis and the edge

power values on the y-axis. I expected here the same anomalous behaviour as in the

previous stage, but this also was not the case in this stage. The results were exorbitantly

high compared to the expected edge power values. While the edge power of the original

27

4 Evaluating the Replicated Camouflage Detection Algorithm

CDA implementation lies in a range between 9.5 < EP < 11, the edge power from my

implementation is around EP ≈ 1 ∗ 1030. This causes the MSE to be ≈ 7.77 ∗ 1061. The
third stage also uses another variable to evaluate the results of this stage. It computes

the percentage of not computed values (NCV). For this stage, no edge power value could

be computed for 77.8% of the stimuli by the original code.

But the result of the replication show an improvement to the original code, as my im-

plementation computes an edge power value for all target orientations. The original one

only computes a finite result for 22.2% of generated stimuli. This is caused by an en-

hancement in the warp and create unique edge matrix(th edge) function, where

I filter out all edge vectors that contain infinite or NaN values because they would lead

to an infinite edge power value. This means, that after resolving the current issues in

the replication, the edge power value can be computed for a larger set of stimuli than it

was possible with the Matlab implementation.

4.3 Evaluation of Unit Tests and Diagnostics Tool Results

In this section, I will show which functions I improved and how this influenced the results

of the diagnostic tool. I did the improvements by adding the tests step by step for each

function and adjusting my replication based on the error I am getting from it. I started

Algorithm 2 Theta Field Function

function theta field(stim size, target center)

t field = np.array(stim size, stim size)

for i← 1 to n do

for j ← 1 to n do

vec = [i, j] - target center

t field[i][j] = cart to pol(vec)[0]

end for

end for

return t field

end function

with the theta field() function. This function computes an array which contains the

polar angle (theta) of each point of a stimulus with respect to the target’s center, like it

is shown in Algorithm 2. This function is a good example to show how implementations

28

4.3 Evaluation of Unit Tests and Diagnostics Tool Results

Figure 4.2: These diagrams show the results of all three diagnostic tool stages for the

second execution. Here, a shift in the mean edge power of each stage in com-

parison to the previous run can be observed. The results from the replication

are still not correlating with the expected results.

29

4 Evaluating the Replicated Camouflage Detection Algorithm

needs to be adjusted during a translation process to the new programming language.

The replication was returning a wrong t field array because the array indices in Mat-

lab start with one like in the pseudocode of Algorithm 2 in line three and four, and in

Python, they do at zero. This difference causes that the vector between a pixel and the

target center, which in calculated in line 5, will have a slightly different angle. So, when

we extract the theta value from the polar coordinates in line 6, we get a wrong value

that influences the edge power calculation in the further steps.

After correcting the shifted indices and tests for the theta field() function passed, I

ran the diagnostic tool again to evaluate the reliability of my replication. The result can

be seen in the Figure 4.2. In the first diagnostic tool stage, we can see that the edge

power values are still not correlating with the values which we are expecting. There is

only a difference in the shift of the edge power values, since they are now lying at the

value around EP ≈ 4.6. The same behaviour can be seen in the second stage of the diag-

nostic tool. Before the values were lying around the value of EP ≈ 4.3, but now they are

lying at a value which is EP ≈ 4.6. There is still no correlation visible when we compare

the edge power values from the original code with the ones from the replication. The

increasing mean edge power causes the mean squared error to decrease for both stages,

since they dropped from MSE1,1 ≈ 1333 to MSE2,1 ≈ 1284 and from MSE1,2 ≈ 239

down to MSE2,2 ≈ 111. MSEx,y stands for the mean squared error for the diagnostic

tool run x in stage y. But as we look into the third stage of the diagnostic tool, we can

see a considerable improvement of the edge power values which are computed from the

replicated code. The values are not at a mean edge power of EP ≈ 7.77 ∗ 1061 anymore

and are now lying at the value of around EP = 4.6. This leads to a mean squared error

of MSE2,3 ≈ 5098, which is a significant change compared to the mean squared error

from the first run. The NCV decreases from 77.8% to 60.1%.

For the next step, I wrote the tests for the circular target mask() function. This

function computes a binary mask which represents the border of the circular target.

Here, only a small adaptation of the replication code was needed because the resulting

target mask matched the inverted target mask from the original code. So, by inverting

the target mask in the replication, the test for this function passed. This change had

an influence on the results of the next diagnostic tool run, which can be observed in the

diagrams of Figure 4.3.

Here we can see that the replication data is still having a very noisy-like behaviour,

30

4.3 Evaluation of Unit Tests and Diagnostics Tool Results

Figure 4.3: These diagrams show the results of all three diagnostic tool stages for the

third execution. The results of the replication are now having a negative

correlation with the expected values, but still have a very noisy behaviour.

31

4 Evaluating the Replicated Camouflage Detection Algorithm

but it’s now correlating with the edge power values from the original code. There is

a negative correlation that we can observe. A negative correlation occurs when one of

the variables is increasing while the other is decreasing (Stocker & Steinke, 2017). This

implies that the higher the edge power value of the original code, the lower the edge

power value from the replication will be. This is what we can conclude from the first

diagram of the Figure 4.3, which shows the results from the first stage of the diagnostic

tool. But as we look into the last two stages, we can also see this behaviour here. Both

diagrams show that the replication returns a large edge power value for target rotations

that should have had a low edge power and vice versa. So to conclude, the improvement

of the circular target mask() function causes the edge power values to correlate

with the expected values, but since it’s a negative correlation, the MSE increases for all

diagnostic tool stages. More precisely, the MSE for run one increased to MSE3,1 ≈ 1595,

while the MSE of the run two was lying at MSE2,1 ≈ 1284. A growth in MSE is also

visible for stage two, where the MSE raised from MSE2,2 ≈ 111 to MSE3,2 ≈ 334. And

last also for stage three, the MSE has a value of MSE3,3 ≈ 11783, while we had an MSE

value of MSE2,3 ≈ 5098 in the previous run.

After finishing the tests for the circular target mask() function, I created the tests

for the steerable gradient() function. This function computes the steerable gradi-

ents for a given stimulus by applying the steerable filter on it with a provided kernel

size. When writing the tests, I noticed two small issues in the code. The first one was

an index shift in the code segment where the center of the steerable filter is computed.

Since Matlab starts its indices at zero and Python at one, the filter center needs to be

adjusted by subtracting a one from it. Second, the steerable gradient() function

uses Matlab’s filter2() function to apply the steerable filter on the stimulus. Like

described in Section 4.4, this function is not having a corresponding function in Python.

Instead, there is the way to implement it with the convolve2d() function from the

SciPy module. But this function contained an issue with the rotation of the steerable

filter. To match the output of filter2(), the steerable filter needs to be rotated by 180.

But in the code, the rotation was only happening by 90 degrees. This is probably the

reason the edge power values in the third diagnostic tool run had a negative correlation

with the expected values.

As we can see in the fourth diagnostic tool run results in Figure 4.4, there is now a

positive correlation. In the first stage, the actual values from the replication are still

32

4.3 Evaluation of Unit Tests and Diagnostics Tool Results

Figure 4.4: These diagrams show the results of all three diagnostic tool stages for the

fourth execution. The results of the replication have a positive correlation

with the expected values. But the results are still shifted by a certain amount

and are not matching completely the expected values regardless of the shift.

For that last stage, the edge power values even moved away from the solution.

33

4 Evaluating the Replicated Camouflage Detection Algorithm

having a noise in the graphs course. But the edge power values of the replication for

the stimuli are now higher than their corresponding edge power value from the original

code. That is the reason why the blue curve is above the orange curve. This leads to a

significant decrease in the MSE value. The MSE shrinks to a value of MSE4,1 ≈ 484.

In the second stage, the correlation is even more visible than in the previous diagram.

The edge power from the replication follows a similar course as the expected edge power

values but shifted by an edge power of △EP ≈ 2. The course of the blue graph is still

having a slight amount of noise in it, so it is not completely matching the course of the

orange graph. When we compare the MSE from the previous one, we can see that the

MSE increases with the improvement of the steerable gradient() function. We now

get a MSE4,2 ≈ 2278, while before we had one of MSE3,2 ≈ 334. Even if the edge power

values were correlating less, the edge power value from the previous run lie closer to the

original value than they do in the fourth run. But even with an increase of the MSE,

we still get closer to the expected results, since the course of the blue graph improved.

This means that the edge power value of the stimulus with the pink noise texture now

matches better with the perceived visibility of the target than before.

But this only applies for stimuli, which have a pink noise texture. When we look into the

results of the third stage, we can see that for the stimuli with the line texture, the course

of the blue graph representing the edge power of the replication has moved further away

from the expected graph course. This leads to an MSE increase of MSE4,3 ≈ 34626.

The NCV remains unchanged.

Next, I created the tests for the normalize gradients() function. This function nor-

malizes the steerable gradients of the stimulus and projects them onto the mask nor-

mal. For normalizing the gradients, I use the generic filter() function described in

Equation 4.6 to calculate the local standard deviation for each pixel of the stimulus.

This computation is an equivalent of stdfilt() from Matlab, like described in Section

4.4. But to get the same results as in Matlab, I can’t pass NumPy’s std() function

to the generic filter() function since the computation of the standard deviation dif-

fers. Based on the documentation of Matlab’s stdfilt() function, I implemented the

standard deviation as it is defined in Equation 4.7. This improvement causes that the

replication is returning the same edge power values as the original code.

When we look at the results of the last diagnostic tool run in Figure 4.5, we can see in

the first and second diagram that only the orange graph is visible, since the orange graph

34

4.3 Evaluation of Unit Tests and Diagnostics Tool Results

Figure 4.5: These diagrams show the results of all three diagnostic tool stages for the last

execution. The results of the replication are matching the expected values.

35

4 Evaluating the Replicated Camouflage Detection Algorithm

lies exactly on the blue one. The MSE has a value of MSE5,1 = 0 and MSE5,2 = 0.

This occurs because the actual values from the replication match exactly the edge power

from the original code. In the diagram of the last stage, where I rotate the target of a

stimulus with a line texture, the edge power values are not only matching the original

code but also filling the gaps where the original code computed an infinite or NaN value.

Here we also have an MSE of MSE5,3 = 0. The NCV is still NCV = 60.1%. But since

the replication is returning an edge power for every stimulus, this NCV value is caused

by the original code. According to the results shown in the diagram, the blue graph is

still differentiable and continues the course of the orange function at each point where

the gaps start and end.

4.4 Large-Scale Test Evaluation of the Replication

After the last diagnostic tool run, I evaluated my replication on a large data set, like

described in Section 3.3. The results can be seen in the diagrams in Figure 4.6 and 4.7.

Each row in Figure 4.6 and 4.7 shows the results of a particular background texture.

Figure 4.6 shows the results of the binary stimuli in the first row, the narrowband

stimuli in the second one and the one over f stimuli in the last row. Furthermore, the

results of the pink noise and brown noise stimuli are shown in Figure 4.7. Each diagram

shows the computed edge power on the y-axis for a stimulus x. The diagrams in the

first column show the edge power values computed by the original algorithm, while the

second column visualizes the results of the replication. The stimulus indices for each

texture type represent the same stimulus in each diagram, meaning that when we have

a stimulus i, the edge power value from the original algorithm can be found at f(x = i)

in the left diagram. Analogously in the right diagrams, the edge power value from

the replication can also be found at f(x = i). As shown in the diagrams, the orange

and blue curves match for all types of stimuli. This means if fmatlab(x) is a function

that computes the edge power by the original CDA and fpython(x) is a function that

computes the edge power by the replication of it, the edge power EP for a stimulus i

is EP (i) = fmatlab(i) = fpython(i) for all stimuli which were generated in the large-scale

test. To confirm it, I also computed the MSE between each edge power value from both

implementations, and I got a mean squared error of MSE = 0. This means that based

on the results of the large-scale test, the latest diagnostic tool run and the coverage tests,

the replication is providing valid and reliable results.

36

4.4 Large-Scale Test Evaluation of the Replication

Figure 4.6: The diagrams visualize the first part of the results of the large-scale test. We

can see the edge power values of the original algorithm on the left diagrams

and the edge power values of the replication on the right ones. The first row

shows the edge power values of the binary stimuli, while in the second row

we can see the edge power values of the narrowband stimuli and in the last

one the results of the one over f stimuli.

37

4 Evaluating the Replicated Camouflage Detection Algorithm

Figure 4.7: The diagrams visualize the second part of the results of the large-scale test.

We can see the edge power values of the original algorithm on the left dia-

grams and the edge power values of the replication on the right ones. The

first row shows the edge power values of the pink noise stimuli, while in the

second row we can see the edge power values of the brown noise stimuli.

38

5 Conclusion and Outlook

5.1 Conclusion

Considering the goal of the thesis formulated in Section 1.3 and the evaluation of the

replication in Section 4.3 and 3.3, we can see that replicating an algorithm from a

scientific publication isn’t straightforward and can be very challenging depending on the

amount of information provided by the original scientific publication. But in the end,

the goal of replicating the CDA was successful. The replicated CDA is returning the

correct edge power values for various kinds of stimuli and even returns a finite solution

when the original algorithm was returning infinite ones.

But the process of replicating scientific publications still does not have a generalized

approach, which can be used as an orientation by other scientists. This is why the process

of replicating the CDA was challenging in the beginning, specially when there were no

tests or validation methods to validate the replicated code. But with the diagnostic tool

together with the tests, the process of replicating the CDA was improved so that in the

end I could achieve the goals of this thesis.

5.2 Outlook and Future Research Opportunities

5.2.1 Extension of the current Camouflage Detection Algorithm

The CDA, which was replicated in Python, is only capable of computing the edge power

for stimuli with a grayscale background texture. To support colored background textures

or images, the input can either be converted into a grayscale image or the algorithm has

to be adjusted so that it can compute the gradients for stimuli with colored images.

Another possible option to extend the CDA is to adjust the algorithm so that for any

kind of target shape, the edge power can be computed. To implement this, a new way

of computing the normals needs to be considered, since the normal orientation for each

39

5 Conclusion and Outlook

pixel on the target edge in the current CDA is computed by the vector between the target

center and pixel location. Regarding this, also the interpolation needs to be adjusted so

that the interpolated edge vectors will be computed correctly.

5.2.2 Algorithm for Edge Detection

To compute the edge power, the CDA used the steerable filter to compute gradients. The

length of the gradients indicates the intensity of an edge. This means that the steerable

gradients are capable of detecting edges of any arbitrary object. Using the stimulus and

the results of the steerable filter for a specific object as base for the training data and

training a neural network on this test data, a machine learning solution can be created

which is capable of detecting objects based on the data from the steerable filter.

40

References

Das, A. (2022). Camouflage detection signal discrimination: Theory, methods experi-

ments (Doctoral dissertation). doi: 10.13140/RG.2.2.10585.80487

Das, A. (2023). abhranildas/camouflage-detection: Matlab package for the detection of

spatial targets. Retrieved from https://github.com/abhranildas/camouflage

-detection (Online; accessed 07.06.2023)

Das, A., & Geisler, W. (2022). Camouflage detection: experiments and a principled

theory (Doctoral dissertation). doi: 10.13140/RG.2.2.32016.07683

Fidler, F., & Wilcox, J. (2021). Reproducibility of Scientific Results. In E. N. Zalta

(Ed.), The Stanford encyclopedia of philosophy (Summer 2021 ed.). Metaphysics

Research Lab, Stanford University. https://plato.stanford.edu/archives/

sum2021/entries/scientific-reproducibility/.

Gonzalez, R. C., Woods, R. E., & Eddins, S. L. (2009). Digital image processing using

matlab (2. ed.). Natick, Mass.: Gatesmark Publ.

Kovac, J. (2007). How to Encourage and Publish Reproducible Research. , 1273–1276.

Rougier, N. P., Hinsen, K., Alexandre, F., Arildsen, T., Barba, L. A., Benureau, F. C. Y.,

. . . Zito, T. (2017). Sustainable computational science: the ReScience initiative.

PeerJ Computer Science, 3 , e142.

Schmittwilken, L., Maertens, M., & Vincent, J. (2023). stimupy — stimupy. Retrieved

from https://stimupy.readthedocs.io/en/latest/index.html (Online; ac-

cessed 28.04.2023)

Stocker, T. C., & Steinke, I. (2017). Statistik: Grundlagen und methodik. De Gruyter,

Oldenbourg.

The MathWorks, Inc. (2023). Find perimeter of objects in binary image - matlab

bwperim - mathworks deutschland. Retrieved from https://de.mathworks.com/

help/images/ref/bwperim.html#buohmjv-6 (Online; accessed 03.05.2023)

The SciPy community. (2023). scipy.ndimage.generic filter — scipy v1.10.1 manual.

Retrieved from https://docs.scipy.org/doc/scipy/reference/generated/

41

https://github.com/abhranildas/camouflage-detection
https://github.com/abhranildas/camouflage-detection
https://plato.stanford.edu/archives/sum2021/entries/scientific-reproducibility/
https://plato.stanford.edu/archives/sum2021/entries/scientific-reproducibility/
https://stimupy.readthedocs.io/en/latest/index.html
https://de.mathworks.com/help/images/ref/bwperim.html#buohmjv-6
https://de.mathworks.com/help/images/ref/bwperim.html#buohmjv-6
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generic_filter.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generic_filter.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generic_filter.html

References

scipy.ndimage.generic filter.html (Online; accessed 19.05.2023)

Vandewalle, P., Kovačević, J., & Vetterli, M. (2019). Reproducible research in signal

processing: What, why, and how. IEEE Signal Processing Magazine, 26 (3).

Zhi, X., & Jiang, S. (2017). Correlation and convolution image filtering appli-

cation analysis. In Proceedings of the 7th international conference on educa-

tion, management, information and mechanical engineering (EMIM 2017). At-

lantis Press. Retrieved 2023-04-15, from http://www.atlantis-press.com/php/

paper-details.php?id=25879248 doi: 10.2991/emim-17.2017.35

42

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generic_filter.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generic_filter.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generic_filter.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generic_filter.html
http://www.atlantis-press.com/php/paper-details.php?id=25879248
http://www.atlantis-press.com/php/paper-details.php?id=25879248

Function Name edge_power

Description compute the edge power for a stimulus. the edge power is a numerical value
that represents the visiblity of the target in an image.

Input • stim: numpy.ndarray
two-dimensional stimulus.

• target_radius: int
radius of the target.

• n_edge: int
amount of interpolation steps.

• kernel_size: numpy.array
kernel size for steerable filter.

Output • edge_power: float
edge power value for the given stimulus.

Visualized Input Visualized Output

• stim:

• target_radius: 64

• n_edge: 1000

• kernel_size: [1, 3]

• edge_power: 9.3214

Appendix

Appendix A: Documentation of CDA

43

Function Name theta_field

Description Computes an array which contains the polar angle (theta) of each point of a
stimulus with respect to the target’s center.

Input • stim_size: int
Size of stimulus, where height = width = stim_size.

• target_center: np.ndarray
center of the stimulus.

Output • theta_field: np.ndarray
two-dimensional array containing polar angles with respect to a
target center.

Visualized Input Visualized Output

• stim_size: 256

• target_center: [127 127]

Appendix

44

Function Name circular_target_mask

Description computes a binary mask which represents the border of circular target. The
target is allocated in the center of the stimulus.

Input • stim_size: int
Size of stimulus, where height = width = stim_size.

• target_radius: int
radius of circular target.

Output • mask_edge: numpy.ndarray
two-dimensional array containing 0 and 1 that reperesents the
circular target.

• mask_normal: numpy.ndarray
two-dimensional array containing normal vectors for the boundary of
the target.

Visualized Input Visualized Output

• stim_size: 256

• target_radius: 64

• mask_edge:

• mask_normal:

45

Function Name steerable_gradient

Description Computes the steerable gradients for a given stimulus by applying the
steerable filter with a provided kernel size.

Input • stim: np.ndarray
stimulus as two-dimensional numpy array

• kernel_size: np.ndarray
kernel_size for steerable gradient

Output • stim_grad: np.ndarray
numpy array containing gradients for each point of the stimulus

Visualized Input Visualized Output

• stim:

• kernel_size: [1, 3]

• stim_grad:

normally, stim_grad is a two-dimensional array
that contains gradients (1x2 vectors) for each
point of the stimulus. To visualize it, the image
above shows the length of each gradient.

Appendix

46

Function Name normalize_gradients

Description Normalize the steerable gradients of the stimulus and project them
onto the mask normal.

Input • stim: np.ndarray
two-dimensional stimulus.

• stim_grad: np.ndarray
steerable gradients for every point of stimulus.

• mask_normal: np.ndarray
mask normal vectors from stimulus.

Output • target_edge_field: numpy.ndarray
normalized normal vectors

Visualized Input Visualized Output

• stim:

• stim_grad:

• mask_ normal:

• target_edge_field

47

Function Name filter_and_sort_theta_edge

Description filter out theta's and normal's that don't lie on on the edge of the target and
sort the values ascending by theta.

Input • theta_field: np.ndarray
polar angles for each point of stimulus.

• target_edge_field: np.ndarray
normalized gradients.

• mask_edge: np.ndarray
mask for the edge of the target.

Output • th_edge: numpy.ndarray
sorted array of thetas and gradients that lie on the edge of the target.

Visualized Input Visualized Output

• theta_field:

• mask_edge:

• target_edge_field:

graphical visualization:

excerpt of the corresponding array:

[[-3.1259, -3.1257, -3.1103 ... 3.1259, 3.1415, 3.1415]

 [1.2840, 3.5388, 2.3194 ... 0.1833, 0.5443, 3.0325]]

Appendix

48

Function Name wrap_and_create_unique_edge_matrix

Description warps th_edge on each side of theta. This means, it copies the theta value and
their corresponding gradients and shift the theta value by - 2 * pi and + 2 * pi.
This function then removes all duplicated thetas from a numpy array of shape
(2,n), where n is the amount of gradients, while th_edge[0] contains the theta
values and th_edge[1] their corresponding gradients.

If there are duplicates, the mean of the gradients will be computed.

Input • th_edge: np.ndarray
'table' that contains the theta values and their corresponding
gradients.

Output • th_edge_wrap: numpy.ndarray
array that contains unique theta values with their corresponding
mean gradients.

Visualized Input Visualized Output

graphical visualization:

excerpt of the corresponding array:

[[-3.1259, -3.1257, -3.1103 ... 3.1259, 3.1415, 3.1415]

 [1.2840, 3.5388, 2.3194 ... 0.1833, 0.5443, 3.0325]]

graphical visualization:

excerpt of the corresponding array:

[[-9.4091 -9.4089 -9.3935 ... 9.4091 9.4247]

 [1.2840 3.5388 2.3194 ... 0.1833 1.7884]]

49

Function Name interpolate

Description interpolate the theta values between -pi and pi in n_edge steps to
get the gradients of every point on the boundary of the circular
target in, so that every point has the same distance to its neighbors.

Input • th_edge_wrap: numpy.ndarray
array that contains unique theta values with their
corresponding mean gradients.

• n_edge : int
amount of interpolation steps

Output • target_edge_vector: numpy.ndarray
array containg edge vectors

Visualized Input Visualized Output

graphical visualization:

excerpt of the corresponding array:

[[-9.4091 -9.4089 -9.3935 ... 9.4091 9.4247]

 [1.2840 3.5388 2.3194 ... 0.1833 1.7884]]

graphical visualization:

excerpt of the corresponding array:

[1.5855 1.3827 3.3025 … 0.49742 1.1429 1.7884]

Appendix

50

	Introduction
	Problem Statement
	Goal of the Thesis
	Outline

	Background
	Reproducibility Computational Studies
	Reproducibility vs. Replicability
	Criteria for Reproducible Studies

	Camouflage Detection Algorithm

	Replication of the Camouflage Detection Algorithm
	Approach for Replicating the Algorithm
	Replication of the Source Code
	Diagnostic Tool for Evaluation
	Unit Test Setup

	Large-Scale Test

	Evaluating the Replicated Camouflage Detection Algorithm
	Challenges during the Translation Process
	Results of Diagnostics Tool After Translation
	Evaluation of Unit Tests and Diagnostics Tool Results
	Large-Scale Test Evaluation of the Replication

	Conclusion and Outlook
	Conclusion
	Outlook and Future Research Opportunities
	Extension of the current Camouflage Detection Algorithm
	Algorithm for Edge Detection

	References
	Appendix

