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A B S T R A C T

Understanding brightness perception relies on perceptual scales, which
is a function mapping the physical unit of luminance to perceived
brightness. Maximum Likelihood Conjoined Measurement (MLCM) is
a difference scaling method that can estimate these perceptual scales
by having a participant compare two stimuli and recording the an-
swers. This thesis introduces an optimization approach of the data
acquisition for MLCM, adopting two sampling strategies. A static and
a dynamic sampling strategy. Using a simulated observer, data in the
shape of an actual experiment was generated to estimate perceptual
scales. This was done with both sampling strategies and multiple
noise levels and then evaluated against the ground truth functions,
which represent the perceptual encoding functions in the simulation.
The static sampling strategies omits trials with high agreement. The
dynamic sampling strategy reduces the amount of initial trial shown
and then only repeat those with low agreement. Both approaches are
able to reduce the amount of trials and consequently the experimental
duration by 45 − 49% without impacting the accuracy or precision of
the perceptual scales noticeably. The improved data collection pro-
cess increases the efficiency of the experiment while upholding the
integrity of the result.

Keywords: mlcm, perceptual scales, scaling methods, brightness

Z U S A M M E N FA S S U N G

Sogenannte Wahrnehmungsskalen helfen dem Verständnis von Hel-
ligkeitswahrnehmung und dienen als Funktionen, um von der ph-
ysischen Einheit Luminanz auf die wahrgenommene Helligkeit abzu-
bilden. Maximum Likelihood Conjoined Measurement (MLCM) ist
eine Differenzskalierungsmethode, welche diese Wahrnehmungsskalen
schätzen kann, indem einem Beobachter zwei Stimuli zum Vergleich
gezeigt werden und die Antworten hinsichtlich der Intensität aufze-
ichnet werden, um die Datensammlung für MLCM effizienter zu
gestalten. Dies wird mit zwei Musterziehungsstrategien erzielt. Eine
statische und eine dynamische Strategie. Mithilfe eines simulierten
Beobachters werden Daten in gleicher Form zu der aus einem echten
Experiment generiert. Die geschätzen Wahrnehmungsskalen werden
mit eingestellten Wahrnehmungsfunktionen verglichen, welche die
Wahrnehmung eines Menschen simulieren sollen. Dies geschieht für
mehrere Rauschwerte. Die statische Musterziehungsstrategie zeigt
die Vergleiche mit hoher Übereinstimmung nicht. Die dynamische
Musterziehungsstrategie verringern die Anzahl der Vergleiche, welche
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anfangs durchgeführt werden und wiederholt dann nur die Vergleiche,
welche eine geringe Übereinstimmung haben. Beide Ansätze schaffen
es, die Anzahl der Vergleiche und dadurch die Zeit für das Experi-
ment um 45− 49% zu senken, ohne einen Einfluss auf die Genauigkeit
oder Präzision zu haben. Der verbesserte Datensammelprozess erhöht
die Effizienz des Experiments und behält dabei die Integrität der
Ergebnisse bei.
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1
I N T R O D U C T I O N

1.1 introduction into brightness perception

Brightness perception is a part of visual sciences that refers to the
measuring, explaining and quantifying how we perceives brightness.
Brightness perception can be influenced by the luminance of an object,
its reflectivity and its surrounding context. These aspects are also
referred to as physical dimensions. While luminance is a physical unit
that can be measured, perceived brightness is a subjective experience
that does not always directly correlate with the luminance of an object
and is more difficult to measure. This difference between luminance and
perceived brightness can be seen in White’s Illusion (1979) (see Figure
1.1), where two objects with identical luminance may be perceived
differently from each other. White’s Illusion is a bar-like structure,
alternating between white and black bars. On those bars two gray
targets are superimposed. The targets have the same width as the bar
in the background and a fraction of the height, such that a part of
the bar in the background is both visible above and below the target.
The targets can have multiple luminance levels between perceived black
(zero) and perceived white (one) and can be either on a white bar
or on a black bar, this is referred to as a context. Both targets can
be on bars of the same luminance or a different luminance, but not
on the same bar. It is not fully understood how White’s Illusion can
influence our perception of brightness. This is why related work such
as Vincent, Maertens, and Aguilar (in preparation) have researched
the relation between stimulus variations and perceptual magnitudes
and is where this thesis aims to build upon by improving the data
collection method.

1.2 measuring brightness perception

The perceived brightness can differ between objects with identical
luminances and also between people who each perceive brightness
different from each other. In order to understand this difference, the
effects of variations in luminance on perceived brightness have to
be measured. First, we need to find a way how we can express the
mapping from luminance to perceived brightness. Perceptual encoding
functions are one possible way to do that. They give us a base on which
we can build our experiment on to measure the perceived brightness
of an object.
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2 introduction

Figure 1.1: Example of White’s Illusion. The left stimuli appears more
intense than the right one, even though both stimuli have an
identical luminance. Both stimuli have a different context, the left
one “on black” and the right one “on white”.

Scaling Methods allow us to measure these perceptual encoding
functions by estimating them using statistics. Scaling methods do not
produce the functions, but estimate perceptual scales, which resem-
ble the encoding functions through multiple data-points. One scal-
ing method, Maximum Likelihood Conjoint Measurement (MLCM),
has been used to estimate perceptual scales that capture how the
physical dimensions luminance and context contribute to the response
(Knoblauch and Maloney, 2012, chapter 8), this is explained in more
detail in Section 1.3.

These perceptual scales can be measured because luminance and
the context exhibit a form of measurable regularity. That means that
luminance and the context are relevant to the visual system, affecting
the perceptual encoding function, and can be expressed empirically
using a transfer function (Georgeson, 2014): Given a varying stimulus
S and measuring the resulting response R, the relationship between
the physical dimensions of luminance and context of the stimulus to
the response can be modeled in a way Ψ(S) = R.

An example for a possible perceptual encoding function and the
estimated perceptual scale can be seen in Figure 1.2A and B respec-
tively. Figure 1.2A shows a potential mapping of luminance for both
contexts into a perceived brightness for White’s Illusion. Figure 1.2B
shows the perceptual scales estimated by MLCM which resemble the
underlying perceptual encoding function. Figure 1.2C is a perceptual
scale estimated using MLCM from a participant in an experiment
conducted by Vincent et al..

1.3 related work

A study about measuring brightness perception was conducted by
Vincent et al. to research the effect of stimulus variations on perceptual
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Figure 1.2: Perceptual encoding functions and perceptual scales generated
by MLCM. (A) Perceptual encoding functions for White’s Illusion
with two contexts “on white” and “on black”. The x-axis presents
the luminance, a measurable physical unit of light emitted by an
object. The y-axis presents perceived brightness Ψ(X) as the
result of the perceptual encoding functions for each context. This
perceptual encoding function is not observable, so this is only an
estimate. (B) estimated perceptual scales using MLCM for ten
luminance levels for each context. The x-axis is again the luminance,
the y-axis is the measured perceived brightness from multiple
trials. This can also be seen in Figure 1.1 where both targets have
the same luminance, but the target “on black” has a higher
intensity than the target “on white”. This perceptual scale
resembles the perceptual encoding function which can be seen in
Figure 1.2A. (C) Perceptual scale for White’s stimulus obtained
with MLCM from an observer “GA” in Vincent et al. (in
preparation). The luminance is not normalized to one

magnitudes. In their study, perceptual scales for White’s Illusion were
created using MLCM to research the perceptual encoding process
using a scaling method. The result is an estimate of the perceptual
encoding function, which cannot be directly measured. Their model
of measuring brightness perception uses a variety of Stimuli-Values
S to trigger different experiences Ψ(S), which then result in different
responses R from observers. This relationship is modeled using func-
tions Ψ = f1(S), R = f2(Ψ) and R = f3(S). In order to measure said
response and transform the results into perceptual scales, an exper-
iment as described in 1.4 was conducted to estimate the perceptual
scales. The study has shown that MLCM is able to estimate non-linear
perceptual scales for multiple participants for White’s Illusion. The
resulting scales show that the luminance for the “on black” target is al-
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ways mapped to a higher perceived brightness than that of “on white”.
The difference in perceived brightness for the same luminance values
is lowest at the edges (close to zero and one) of the scale and highest
in the middle range (close to 0.5 and 0.6). The estimated perceptual
scales are in agreement with the knowledge regarding the effect of
White’s Illusion. This leads to the conclusion that MLCM can provide
a link between physical dimensions and perceptual experiences in the
form of perceptual encoding.

1.4 experimental design for mlcm

Perceived brightness is measured by showing a collection of trials
consisting of two stimuli, similar to what can be seen in Figure 1.1.
In front of the participant is an input-device with two buttons, each
corresponding to either the left or the right target in the trial. The
participants task is to determine which of the two targets they perceive
as more intense and to press the corresponding button. There are 15

repeats for each unique trial. Each round of trials compares every
luminance level and every context with each other, with the exception
of the same luminance and context for both stimuli, as well as ignoring
the order of stimuli. This is set up as an 2AFC experiment, so the
participants must choose either left or right, they cannot choose to not
give an answer or anything other than left or right. There is no time
limit for the trials, participants can take as long as they want to give
an answer.

1.5 timecost of the experimental procedure

While each trial of comparing two stimuli can be done in just a second
to just a few seconds, comparing multiple luminance levels and contexts
will add up to hundreds or even thousands of trials

Let NL be the amount of different luminance levels, NC the amount
of contexts::

T = NL · NC

as the amount of possible unique targets. We can use T to calculate
the amount of unique trials:

#Unique trials = T·(T−1)
2

This gives us:

20·(20−1)
2 = 190 unique trials

The timecost increases if we decide to add more luminance levels
and contexts as can be viewed in the table 1.1. The table shows the
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exponential growth of unique comparisons (trials) for luminance levels
and contexts, as well as the total amount of trials with 15 repeats of
every unique comparison. Increasing the amount of luminance levels
by 30% will increase the amount of unique trials by more than 60%.
Consequently, the timecost increases with the amount of unique trials.
Doubling the luminance levels and contexts will make the experiment
unfeasible.

Luminance Levels Contexts Unique comparisons

10 2 190(·15 = 2850)

13 2 325(·15 = 4875)

10 3 435(·15 = 6525)

20 4 3160(·15 = 47400)

Table 1.1: Exponential growth of trials when adding more luminance levels
or contexts

(A) (B)

Figure 1.3: Two MLCM trials of White’s Illusion. (A) An Easy trial with two
stimuli. The difference in luminance is high. There is probably
high agreement on which target a participant will choose. The
right target is perceived as brighter. (B) A difficult trial with two
stimuli. The difference in luminance is low. There is probably low
agreement on which target a participant will choose. The left
target has a higher luminance.

Not all trials carry the same informative value. There are “easy
trials” with predictable results as can be seen in Figure 1.3A. This trial
has a high agreement among observers. A high agreement means, that
an observer is very likely to pick the same target again during most, if
not all trial repeats. The resulting relative frequency of answers is zero
or one, referring to 0% or 100% respectively. The opposite can be said
for a difficult trial in Figure 1.3B where an observer may give different
answers in multiple showings of the unique trial. The resulting relative
frequency is between zero and one. All unique trials are made up of
two stimuli, and the resulting relative frequencies for all unique trials
and for the 15 trial repeats is presented using a heatmap. Figure 1.4
shows the relative frequency from an observer in Vincent et al. (in
preparation) as a heatmap. The x- and y-axis show the contexts and
luminances being compared. The cells show the relative frequency of
answers. The large amount of zeroes and ones indicates that a lot of
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the unique trials are easy and thus predictable. The easy trials are
very common among comparisons within the same context and less
common in trials with differing contexts. These easy trials still create
a time cost and make up more than 50% of all unique trials, so it can
lead to an important question: Do all unique trials have to be shown
to participants if we can predict some of the result?

Figure 1.4: Heatmap of relative frequency of White’s Illusion trial answers
for one participant. Each value of a cell represents the relative
frequency of a participant choosing one stimulus over another in
15 trial repeats, 2850 Trials in total. x- and y-axis represent both
contexts and luminance levels. The stimuli on the x- and y-axis are
compared against each other.
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1.6 optimizing the experiment

Being able to reduce the number of trials could reduce the overall time
it takes to do an experiment. It could also leave time for more of the
informative trials, thus increasing efficiency and reduce tiredness in
observers. Knowing which trials carry more informational value pro-
vides the opportunity to show more informative trials to participants,
leading to potentially better results using the same amount of time
or similar results using less time. This raises the following research
question: Can we reduce the amount of less informative trials and
consequently the experiments duration, for a fixed set of unique stim-
uli, without impacting the quality of the encoding function estimated
using MLCM?

In this thesis I explore this question by simulating the experiment
using a simulated observer. I have developed two novel sampling
strategies strategies that could reduce the amount of trials with high
agreement and improve the data collection for the experiment. I evalu-
ated the estimated perceptual scales against the perceptual encoding
functions available in a simulation using the Root-Mean-Squared-Error
(RMSE).





2
M E T H O D O L O G Y

The goal of the thesis is to find strategies to optimize the data acqui-
sition for the experiment. I have developed two strategies that can
reduce the number of uninformative trials and prioritize the more
informative trials.

The experiment conducted by Vincent et al. (in preparation) pro-
vided me with some prior knowledge of which trials are more in-
formative. This knowledge was used as a basis to develop the Static
sampling strategy, omitting a part of the less informative trials from
the experiment. I also have developed a strategy that improves the
data acquisition of the experiment without requiring prior knowledge
like the Static sampling strategy does. The Dynamic sampling strategy
can prioritize more informative trials and show them more often than
less informative trials. I evaluated these sampling strategies through a
simulated experiment without actual participants.

2.1 simulation

I set up the simulation-environment for the experiment, creating
a simulated observer to act as a replacement for a participant. A
visualization for this process can be seen in Figure 2.1.

Step one is setting up the simulation with two ground truth func-
tions Ψw(s) and Ψb(s) to have the computer simulate brightness per-
ception for both contexts using the luminance s, a noise level σ to
simulate randomness, the ten luminance levels and the two contexts.
The ground truth functions are modified power functions:

Ψb(s) = m(s − y)α + n and Ψw(s) = o(s − z)β + p
where α, β ≥ 0 are the exponents and m, n, o, p, y, z ∈ R can modify

and shift the power functions in more ways.
Step two is generating all unique trials containing the 10 luminance

levels and two contexts.
Step three is using the simulated observer, calculating the decision

variable for each trial using the ground truth functions and noise. The
decision variable is calculated as

δ = Ψc2(s2)− Ψc1(s1) + ϵ

where c1 and c2 refers to the ground truth function based on the
two contexts. The values s1 and s2 denote the luminance value. The
Gaussian noise ϵ ∼ N(0, σ2) also affects the decision variable, adding
randomness. The simulated observer chooses the first stimulus if δ < 0,
otherwise it chooses the second one.

9
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Step four is creating data in the same format as actual data from
a human participant, such that the data can be fed into the MLCM
algorithm.

Step five is MLCM producing the perceptual scales based on the
simulated data. The perceptual scales are estimates that approach
the perceptual encoding function. The perceptual encoding functions
are referred to as “ground truth functions” in the simulations. The
developed static and dynamic sampling strategies alter the generated
trials by omitting some of them. This happens after step two and
before step three before the computer acts as the simulated observer.
The simulation then continues until the end as normal for the Static
sampling strategy. At the end of step three, the Dynamic sampling
strategy will do a small analysis of results and repeat step three with
a selection of trials again before continuing as normal until the end of
the simulation.

Figure 2.1: Process of the simulation from setup to estimating the perceptual
scales
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After simulation data is obtained, the estimated perceptual scales
are compared to the ground truth functions to see how accurate they
are. The perceptual scales can also be compared against the scales for
the other sampling strategies. It is expected that the data gathered
by the sampling strategies is less than that of the full experiment
since less trials will be shown. The simulation for this thesis is an
extension of the simulation used in Vincent et al. (in preparation).
(The simulation is available at: https://git.tu-berlin.de/janzabel/
white_scaling_bachelor)

The ground truth function Ψ(X) changes how luminance and context
are translated into perceived brightness. The function, as well as the
luminance levels are normalised between 0 and 1, 0 being the lowest
possible luminance and 1 being the highest possible luminance. The
functions are anchored at 0 for the lowest luminance and the “on white”
position. There is one ground truth function for every of the two
contexts since every context alters how brightness is perceived. The
ground truth function for “on white” and “on black” will be different
from each other throughout the experiments. The “on black” function
will translate a luminance level to a higher perceived brightness than
the function for “on white” based on the reports in Vincent et al. (in
preparation). An example for ground truth functions can be seen in
Figure 2.2.

Figure 2.2: Two ground truth functions. One each for “on white” and “on
black” setup as arguments for the simulated observer. The
ground truth functions can have multiple shapes and serve as
perceptual encoding functions in the simulation. The displayed
ground truth functions are: ΨWhite(X) = X0.4 and
ΨBlack(X) = X0.8

It is also possible to change the amount of noise at the decision
stage. The noise simulates the uncertainty of participants, allowing the
trials to give more realistic results for stimuli with similarly perceived
brightness, as well as introducing a small amount of lapses. The noise
will vary between 0 and 0.1 at the decision stage, 0 being a determin-
istic simulation, meaning that a trial with two stimuli will always give
the same result, no matter how often it is shown. Increasing the noise
will increase the chance the simulation picks a different answer for
the same trial in another round of trials. A realistic estimate for noise

https://git.tu-berlin.de/janzabel/white_scaling_bachelor
https://git.tu-berlin.de/janzabel/white_scaling_bachelor
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at the decision stage is ∼ 5% and a realistic range 3.21% ≤ σ ≤ 6.72%
as reported by Vincent et al. (in preparation).

2.2 how can we reduce the amount of trials

One way to improve the efficiency of data acquisition is to use a
sampling strategy. Sampling means choosing a selection of trials to
show to participants. The goal is to show a reduced total amount of
trials for every experiment. There are multiple ways to sample the
trials: sampling the trials before showing them and sampling the trials
while they are being shown. I have developed two strategies that could
reduce the amount of trials.

2.2.1 The static sampling strategy

The Static sampling strategy aims to sample before any trials are
shown to a participant or simulated. The way this works is by compar-
ing the luminance levels and not showing trials with high differences
in luminance. I expect participants to have a high agreement on big
differences in luminance for the same context, so when both targets are
“on white” or both targets are “on black”. I use a percentile difference
in luminance of > 20% for the same context. For different contexts, so
when one target is “on white” and one target is “on black”, a percentile
difference of > 50% is deciding whether a trial is being shown or not.
The effects of this Static sampling strategy can be viewed in Figure 2.3
where the heatmap shows less trials than before.
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Figure 2.3: Heatmap of relative frequency of an experiment with White’s
illusion (1979). There are 15 trial repeats for the Static sampling
strategy from a simulated observer. Trials with a luminance
difference of > 20% for an identical context are removed from the
collection of shown trials. Trials with a luminance difference of
> 50% for a different context are also removed from the collection
of trials. The removed trials are denoted by a red X.

2.2.2 The dynamic sampling strategy

The Dynamic sampling strategy aims to sample while the trials are
being shown to a participant or simulated. The way this works is by
splitting the experiment into two parts, the initial stage and the sample
stage. The initial stage is similar to the original experiment in that
all trials are being shown, no matter the difference in luminance, but
reducing the amount of repeats for each trial from 15 times down to
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seven times. This gives a first impression and can be used to sample
the trials in a way where trials with high agreement results, so 0%
or 100%, are not shown again. Trials with low agreement results, so
anything > 0% and < 100%, are shown again in the sample stage
another 8 times, aiming to get the same accuracy as the original
experiment for those trials. This process can be seen in Figures 2.4A
and 2.4B.

On White

(A)
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On White

(B)

Figure 2.4: Heatmaps of relative frequency showcasing the Dynamic
sampling strategy for an experiment with White’s Illusion from a
simulated observer. (A) Initial run creates results for sample run.
(B) Isolate low agreement results (The trials which are not grayed
out). Repeat only those trials in sample run.

2.3 varying parameters

The ground truth functions shown in Figure 2.2 are just two of multiple
ground truth functions that can be used in the simulation. Changing
ground truth functions can be used to test for which range of power
functions the sampling strategies work and at which point their accu-
racy and precision is reduced. Another example for a different ground
truth function is shown in Figure 2.5. Other ground truth can also
show if the data collected by the sampling strategies is enough to esti-
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mate functions of different shapes, such as a cubic function. The same
can be said for the noise which will vary between 0% − 10% (0.0-0.1)
at the decision stage to test the limits of the sampling strategies.

Figure 2.5: Alternative Ground Truth Functions.
ΨBlack(X) = 4 · (X − 1

2 )
3 + 0.5 and ΨWhite(X) = X4. These can be

used to test if both sampling strategies are still able to estimate
perceptual scales for these types of ground truth functions.

2.4 evaluation

As the experiment is simulated, we have full knowledge of the ground
truth functions which would not be available in an actual experiment.
This allows for a direct comparison between the estimated perceptual
scales Ψ̂w(s), Ψ̂b(s) and the ground truth functions Ψw(s), Ψb(s) for
each of the N=10 luminance values s used in the simulation. For this
comparison, the Root-Mean-Squared-Error (RMSE) is used to calculate
the accuracy of the perceptual scales.

The RMSE is calculated as:

RMSE =

√
1
N

N

∑
i=1

((Ψw(si)− Ψ̂w(si))
2)+

√
1
N

N

∑
i=1

((Ψb(si)− Ψ̂b(si))
2)

The simulation was run 1000 times and the average RMSE was
calculated for accuracy. This is how much the perceptual scales are
different from the ground truth functions. A small RMSE corresponds
to high accuracy. Then a percentile confidence interval of 95% is
calculated to get the precision of the estimated perceptual scales. The
precision is a range where 95% of the estimated perceptual scales will
be. A high precision corresponds to a small confidence interval.
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Figure 3.1 shows an average of the perceptual scales for all sampling
strategies for a realistic average noise level at the decision stage of
0.05. A comparison between the three sampling strategies depicted
in the perceptual scales shows that the sampling strategies do not
seem to impact the estimated scales in a way which would alter the
accuracy or precision. The amount of trials is reduced by ∼ 45 −
50%. Both sampling strategies collect enough data to successfully
estimate accurate and precise perceptual scales with MLCM. This gets
even clearer when looking at the RMSE in Figure 3.2 for each of the
sampling strategies as both the static and Dynamic sampling strategy
have a less than 0.5% decrease in accuracy when compared to using
no (full) sampling strategy.
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Figure 3.1: Perceptual scales estimated by MLCM. Corresponding ground
truth functions are ΨWhite(X) = X0.4 and ΨBlack(X) = X0.8. The
noise level at the decision stage is 0.05. The labels Full, Static and
Dynamic refer to the sampling strategies.

Sampling Strategies RMSE

Full 0.0696

Static 0.0701

Dynamic 0.0737

Table 3.1: Table of RMSE for the sampling strategies with a noise of 0.05. A
lower RMSE corresponds to higher accuracy.

Figures 3.3A-3.3E show the perceptual scales estimated by MLCM
for the functions ΨWhite(X) = X0.4 and ΨBlack(X) = X0.8 and varying
levels of noise between 0.0 and 0.1 at the decision stage in the simula-
tion. Each row of scales represent a simulation with one level of noise.
This is a selection of noise levels I deemed relevant. More scales of

17
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Figure 3.2: RMSE averaged over 1000 simulations from a simulated observer
for all sampling strategies. Lower RMSE means a closer
approximation of the ground truth function. The RMSE is
calculated against the ground truth functions. The exact numbers
can be viewed in table 3.1.

simulations with other noise levels (0.01, 0.03, 0.07, 0.08 and 0.09) can
be found in the Appendix.

Figure 3.3A depicts the scales of a simulation without noise, making
it deterministic. The results are inaccurate. MLCM is not able to
approach the underlying ground truth functions. Figure 3.3B shows an
unrealistically low level of noise and the scales are inaccurate. MLCM
is unable to approach the ground truth functions using perceptual
scales accurately, regardless of the sampling strategy. Comparing
Figure 3.3A, B and C for any of the sampling strategies visualizes the
trend that the accuracy of the scales improves with a rising noise level.
This is until the noise in the simulation gets unrealistically high, as can
be seen in Figure 3.3D. The scales have a high accuracy and represent
the ground truth functions from a noise level 0.04 as shown in Figure
3.3C, which is well within the noise range recorded in Vincent et al.
(in preparation) for human participants.

Using the Full sampling strategy and using the Static sampling
strategy results in almost identical scales across all noise levels. The
increase in efficiency when using the Static sampling strategy is 45.2%,
reducing the amount of trials from 2850 down to 1560 per experiment.

The Dynamic sampling strategy has a slightly lower accuracy and
precision. The accuracy refers to the position of the dots. The precision
refers to the size of the confidence intervals. The increase in efficiency
is divided into two parts. An increase of 53.3% with the initial stage,
but this is lowered because of the sample stage which has a different
amount of trials every time. The average is around 200. The overall
increase in efficiency is around 46.3%. Both sampling strategies were
able to estimate the scales for realistic noise level estimates.
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Noise: 0.0

Sta�c DynamicFull

Noise: 0.02

Noise: 0.04

Noise: 0.06

Noise: 0.1

(A)

(C)

(B)

(E)

(D)

Figure 3.3: Perceptual Scales estimated by MLCM using a simulated
observer with all sampling strategies for the noise levels (A) 0.0
(B) 0.02 (C) 0.04 (D) 0.06 (E) 0.1

3.0.1 Different noise levels

Every visual system is unique and Vincent et al. (in preparation) has
shown that participants have varying levels of noise when comparing
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the intensity of stimuli. Because there is no fixed noise for everyone, it
is relevant to test the sampling strategies for multiple levels of noise.
The Figures 3.4A-C depict the changes of RMSE from the estimated
perceptual scales for multiple levels of noise between 0.0 and 0.1.

Full

Dynamic

Sta�c

Figure 3.4: RMSE Plots for noise levels between 0.0 and 0.1 in increments of
0.01. Averaged over 1000 simulations from the simulated
observer. The RMSE is the mean deviation for all ten luminance
levels and two contexts. The x-axis shows the noise level at the
decision stage. The y-axis shows the RMSE. The blue area is the
95% confidence interval. The blue and red markings show the
lowest and highest noise levels recorded by Vincent et al. (in
preparation).

The overall deviation of the perceptual scales from the ground
truth functions is less than 10% for a realistic noise level range for all
sampling strategies and lowest at around 6 − 8% for the noise range
at the decision stage of 0.04-0.06. The accuracy is good from a noise of
0.04 and upwards. The precision decreases with rising noise levels. The
RMSE for the full sampling strategy and the Static sampling strategy
is almost identical, deviating only at very high noise levels when the
amount of outliers increases to the point of affecting the estimated
scales. These outliers are removed from the collection of trials by the
Static sampling strategy. An example of this can be seen in Figures
3.5A and B. The Dynamic sampling strategy has the lowest accuracy
and precision when compared to the other sampling strategies, but
both accuracy and precision are within 10% difference when compared
to the other sampling strategies for a realistic noise range.
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(A)
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(B)

Figure 3.5: Relative Frequency of an experiment with White’s Illusion (1979)
from a simulated observer. A drawback of the Static sampling
strategy occurs for very high noise levels. Some relevant trials at
the top left area are removed from the collection of trials that is
simulated. This simulation was run with an unrealistically high
level of noise and exists only to present a problem which could
occur. (A) 150 trials and a high noise of 0.1, full sampling strategy
(B) 150 trials and a high noise of 0.1, Static sampling strategy

3.0.2 Parameters of the dynamic sampling strategy

The accuracy and precision of the Dynamic sampling strategy can be
improved when changing the amount of trials in the initial stage and
in the sample stage, at the cost of being less efficient. Figure 3.6 shows
the RMSE for varying arguments of the Dynamic sampling strategy. I
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vary the amount of trials in the stages, always reaching 15 repeats in
total for trials with low agreement results. If the initial stage has seven
trial repeats then the sample stage has 15-7=8 trial repeats. The more
trial repeats there are in the initial stage, the less efficient but more
accurate and precise the estimated perceptual scales are. The far right
entry at 15 Initial repeats and zero sample trial repeats represents the
full experiment without any sampling strategies applied. The accuracy
is high between seven and 15 Initial trial repeats. For all simulations,
seven initial trial repeats and eight sample trial repeats were used.

Figure 3.6: RMSE for multiple arguments of the Dynamic sampling strategy.
Experiment with White’s Illusion from the simulated observer,
averaged over 1000 simulations for a noise of 0.05 at the decision
stage. The x-axis shows the amount of trials in the initial stage
and indirectly the amount of trials in the sample stage. The
y-axis is the RMSE. The ground truth functions are those used
before in Figures 3.3A-3.3E. The light-blue zone is the 95%
confidence interval of RMSEs.
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3.0.3 Alternative ground truth functions

As said in Section 2.3, there are multiple ground truth functions to
use in the simulation. Figure 3.7A-3.7C presents multiple sets of two
alternative ground truth functions:

(A)
Full

(B)

(C)

Sta�c Dynamic

Figure 3.7: Alternative ground truth functions for the simulated observer in
the simulations. The noise at the decision stage is 0.05. The
sampling strategies are full, static and dynamic from left to right.
(A) Set of alternative ground truth functions for the simulated
observer. ΨWhite(X) = X4 and ΨBlack(X) = 4 · (X − 1

2 )
3 + 0.5 (B)

ΨWhite(X) = X6 and ΨBlack(X) = X0.2 (C) ΨWhite(X) = X8 and
ΨBlack(X) = X

Not all sampling strategies can estimate all functions equally well
and the limits for the given arguments of each sampling strategies are
reached. For the functions presented in Figure 3.7A, both the static and
the Dynamic sampling strategy are able to estimate both functions,
but with lower precision than using the full sampling strategy. The
decline in precision for the Static sampling strategy is noteworthy as
this shows that extreme functions like f (X) = X4 appear to be the
limit for the arguments used. The accuracy for the Static sampling
strategy is higher than when using the full sampling strategy.
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An even more extreme example can be seen in Figure 3.7B, where the
Static sampling strategy is not able to generate enough data for MLCM
to estimate accurate perceptual scales. Both scales for f (x) = X6 and
f (X) = X0.2 have significantly worse accuracy and precision at the
edges where the Static sampling strategy reduces the amount of trials.
The Dynamic sampling strategy does better here and is able to both
more accurately and more precisely estimate both functions. The last
set of functions also contains a linear function X where both sampling
strategies are able to estimate the function with high accuracy and
precision.

The RMSE plots for all sets of functions can be seen in Figure 3.8A-C

Figure 3.8: RMSE for the different sets of alternative ground truth functions
shown in Figure 3.7A-C (A) RMSE for the functions shown in
Figure 3.7A (B) RMSE for the functions shown in Figure 3.7B (C)
RMSE for the functions shown in Figure 3.7C

These alternative and somewhat extreme ground truth functions
which do not represent realistic perceptual encoding functions show
that the sampling strategies do work to some degree at these extremes,
but not everywhere. The highly decreased accuracy for the Static
sampling strategy for Figure 3.7B is obvious and can be seen clearly
in Figure B.





4
D I S C U S S I O N

In this thesis I studied whether it is possible to improve the data
acquisition for MLCM. This was achieved by reducing the amount
of trials and consequently the experiments duration, for a fixed set
of unique stimuli, without impacting the quality of the encoding
function estimated using MLCM. After setting up the simulation
using the ground truth functions and noise, the sampling strategies
were applied to the trials. The simulated observer creates data which
is then fed into the MLCM algorithm. The resulting perceptual scales
are then compared to the ground truth functions of the simulation to
calculate the RMSE. Multiple parameters for the Dynamic sampling
strategy are also compared.

4.0.1 Estimating the perceptual scales

For a realistic noise level, MLCM is able to estimate perceptual scales
that resemble the ground truth functions accurately using both sam-
pling strategies. The sampling strategy reduce the amount of trials by
45, 3% for the static strategy and between 45 − 50% for the dynamic
strategy. The deviation is between 5% and 9% for the ten data points
of the perceptual scales within the realistic noise range. The Static
sampling strategy is able to estimate almost identical scales for most
of the parameters used in the simulations, with minor deviations in
unrealistically high noise level environments. The perceptual scales
are not completely identical because of noise. Even after the average
of 1000 simulations, there is a difference of less than 0.5% between
the perceptual scales of the Static sampling strategy and the full (no)
sampling strategy. The Dynamic sampling strategy is able to estimate
scales which are similar but in almost all cases slightly worse than
the perceptual scales estimated by using the full sampling strategy
or the Static sampling strategy, being close to 10% in deviation. Both
sampling strategies are able to estimate scales which are similar to the
ones estimated by using the full sampling strategy for a wide range
of perceptual encoding functions, but break at extreme functions like
X4 and X0.2 where the accuracy of the perceptual scales drops to
undesirable levels.

4.0.2 Interpretation

Both sampling strategies are able to generate enough data for MLCM
to successfully estimate perceptual scales which resemble a multitude

27
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of encoding functions while increasing the efficiency of the simulated
experiment by around 45%-49%. The amount of trials can be reduced
without impacting the quality of the encoding function estimated
using MLCM, at least when using White’s Illusion (1979), but likely
also for other stimuli when adapting the sampling strategies. The
improvement is expected to be similar for the actual experiment. As
can be seen in Figures 3.3A and 3.3B, MLCM is unable to estimate
perceptual scales which resemble the perceptual encoding function
when the noise level at the decision stage is low (< 2%). The accuracy
is low, such that the scales do not approach the ground truth functions.
The data used to estimate the perceptual scales can be interpreted
as deterministic or close to deterministic. Deterministic results can
be seen in every heatmap presented and consist of only two kinds
of values in these heatmaps, zeroes and oness. These results provide
the insight that the perceptual scales estimated by MLCM are largely
unaffected by values that are zeroes and ones. This is not to say that
the zeroes and ones are not informative, another algorithm may be
able to estimate perceptual scales or something similar with these
values, they just are not informative for MLCM. The same is indicated
in every simulated experiment using the Static sampling strategy, as
the estimated scales are almost identical to the ones estimated without
using any sampling strategy. The Static sampling strategy aims to
exclusively remove trials that have a very high agreement, which are
exactly the trials that result in zeroes and ones.

The alternative ground truth functions shown in Section 3.3 show-
case the limits of the sampling strategies as the Static sampling strategy
has a lower accuracy for the scales shown in Figures 3.7B since the
relevant trials to estimate the scales are part of the removed trials
for these extreme functions. Unexpected is that Figure 3.7A shows a
better result for the Static sampling strategy, where doing all trials for
a cubic function might have been detrimental for the estimated scales.
Also unexpected is that in Figure 3.7C, the Dynamic sampling strategy
has a better accuracy than both no- and the Static sampling strategy.
This is caused by the linear scale which means that there are only very
few informative trials and that the results are not representative as the
experiment has not been adjusted for these extreme functions. Figures
3.7A and B show the expected results where the Dynamic sampling
strategy is less accurate than using the full sampling strategy, and in
case of Figure 3.7B more accurate than the Static sampling strategy as
the Static sampling strategy is not tuned for this set of ground truth
functions.

4.0.3 Limitations of the sampling strategies

The Static sampling strategy has almost identical results when com-
paring it to using all trials. There is little to no loss in accuracy or
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precision for a wide range of ground truth functions. The time for
each experiment has been reduced by almost 50%, but this can vary
between functions used and the set luminance thresholds at which to
omit trials. The Static sampling strategy does however require some
prior knowledge of the results to be set up efficiently. It is not agnostic.
Minor improvements can be made using common sense, for example
using a low luminance threshold for the same context, but this is diffi-
cult for different contexts. There are more optical Illusions than White’s
Illusion and the Static sampling strategy can not be applied to those
and guarantee improved efficiency. The Dynamic sampling strategy,
unlike the Static sampling strategy, is agnostic. Using multiple initial
trial repeats, it can be applied to almost any form of Stimulus without
the prior knowledge of the results. The gain in efficiency is comparable
to that of the Static sampling strategy, averaging at 50%, but this is
dependent on the ground truth functions and noise level used. It also
comes at the cost of having lower precision and in some cases also a
lower accuracy compared to a well set up Static sampling strategy.

The sampling strategies can work together by eliminating each
others weaknesses. The Dynamic sampling strategy has the advantage
of being agnostic, so it could be used to get a first estimate of the data.
This estimate can then be used to set up the arguments for the Static
sampling strategy and improve the accuracy and precision of all future
results while maintaining a more efficient experimental procedure.
Or using both sampling strategies at the same time for a very high
increase in efficiency at the cost of a lower accuracy and precision of
the Dynamic sampling strategy.

4.0.4 Sampling the stimulus domain

I use a linear scale normalized from zero to one in steps of 0.1. While
I do have prior knowledge of the data and can use an improved
non-linear scale based on the already created perceptual encoding
functions, I test the sampling strategies on multiple types of ground
truth functions with different shapes for which I do not have any prior
knowledge. To achieve a uniformity of results, I use a linear scale for
all simulated experiments. This also allows for the sampling strategies
to be adapted to similar experiments without having to change the
scales. For the actual experiment with participants a non-linear scale
was used as reported by Vincent et al. (in preparation). The sampling
strategies may need to be adjusted to improve the efficiency of data
acquisition for a non-linear scale.

4.0.5 Other sampling strategies

Another sampling strategy which I have not used in any of the experi-
ments is the random sampling strategy. It works by deciding to show
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only 90% randomly sampled trials instead of every trial. Researchers
can always decide to use a different percentage of trials to show. An
example for this procedure can be seen in Shooner and Mullen (2022).
I expect this to have an impact on the accuracy and precision similar
to the Dynamic sampling strategy, which I try to mitigate using the
Static sampling strategy.

4.0.6 Recommendation

The Dynamic sampling strategy proved to work even for extreme
ground truth functions and is expected to work for other Stimuli as
well. Without prior knowledge of the results, the Dynamic sampling
strategy should be applied first with a linear scale to get a first im-
pression of the perceptual scales and their shape. The data can then
be analyzed to find parameters for the Static sampling strategy for
improved accuracy, as well as a potential non-linear scale where more
trials are conducted near “relevant” luminance levels for improved
scales in the future. If the decrease in accuracy is a non-issue, both the
static- and Dynamic sampling strategy can be applied together.

4.0.7 Open questions

The best approach for a realistic function would be a logit function
ln p

1−p , but that function can not be normalised between zero and one.
Both edges are −∞ and ∞ respectively. Instead, I chose a multitude of
power functions to use in the simulation.

One suggested way of finding lapses is that when looking at the
results, any low agreement result that is surrounded by high agree-
ment results, could be a lapse. This means that if any results does not
have high agreement, but every “neighbour”, so trials with similar
luminance levels, has high agreement, the trial is most likely a lapse
and the result could be corrected without falsifying the data.

Another aspect that could be considered in the future is the time it
takes a participant to answer a trial. A trial with high agreement takes
very little time since a participant does not have to think much before
making a decision. A trial with very low agreement can take longer
since participants might be unsure about which stimuli they deem
more intense and will hesitate to give an answer within a short time
frame. This does not take into account the time a participant might
rest his eyes between trials or if they think about something else while
doing the experiment, thus needing longer to answer disregarding the
trial. There might be more benefits or limitations to this approach that
I am not considering right now.

MLCM is able to estimate accurate perceptual scales when the
data is non-deterministic. There could be a way to apply a reversed
strategy. If we can determine for which trials a participant might be
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able to answer with a high agreement, we could use that data to get
similar scales as those estimated using MLCM. How this option can
be approached can be a topic for another thesis, but the trials with
high agreement are arguably easier to determine than those with low
agreement.

Similar to finding lapses, the Dynamic sampling strategy could be
improved by adding trials with high agreement of neighbours with
low agreement to the selection of trials shown, reducing the efficiency
but aiming to improve the accuracy to full sampling strategy levels.

4.1 conclusion

This bachelor thesis researched if the data acquisition for MLCM can
be optimized. The results of the simulations showed that the amount
of unique trials in an experiment can be reduced without impacting
the quality of the perceptual scales that MLCM estimates, or only
impacting the quality by reducing the accuracy for less than 10%.
Both developed sampling strategies can achieve an improved data
acquisition through different means. The Static sampling strategy
requires prior knowledge of the resulting data, but does not affect
the accuracy or precision for a wide range of functions and noise
levels. The Dynamic sampling strategy is agnostic, but affects the
accuracy and precision of the estimated perceptual scales. While other
sampling strategies like random sampling do offer a more efficient
data acquisition, they do not focus on finding more informative trials.
The dynamic approach also adds the opportunity to look at consistency
and inconsistency for future trials while the experiment in being
conducted. I did not expect the Static sampling strategy to work the
way it does, simply removing trials and not replacing them with fake
but predictable results instead. MLCM being unaffected by the missing
trials was an unexpected discovery. The dynamic strategy, similar to
the random sampling strategy, was expected to have an effect on the
accuracy and precision of the estimated scales and works as intended.
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A
A P P E N D I X

a.1 other noise levels

Here are more perceptual scales from simulations with noise levels
that are not shown in the result section.
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(F) Noise = 0.01
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(G) Noise = 0.03
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(H) Noise = 0.07
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(I) Noise = 0.08
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(J) Noise = 0.09
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