Optimizing data acquisition for scaling methods, particularly MLCM

Bachelor Thesis Exposé
Jan Zabel

Trial: Which side does the participant perceive as brighter?

2AFC

Perceptual Encoding Function

- Empirical estimation of brightness perception in our visual system
- Transfer function $\mathrm{f}(\mathrm{x})$:
- x: Luminance and Context
- Luminance: 10 Levels between 0 and 1
- Contexts: „On white" and „On Black"
- f: x to perceived brightness R

Luminance normalized to 1

D

Maximum Likelihood Conjoined Measurement (MLCM)

- Used to estimate perceptual scales
- Models relationship between stimulus and response

- Luminance and perceived brightness
- Maximum likelihood
- Perceptual scales represent Perceptual Encoding Function
- How the illusion affects our perception
- Response to a unique stimulus

The Problem

- Trials accumulate
- Some trials have consistent results
- Consistent results aren't precious
- Consistent results take up time and energy

Lumi- nance	Context	Trials	Total
10	2	190	2850
13	2	325	4875
10	3	435	6525
20	4	3160	47400

$$
\begin{aligned}
& \text { Unique Trials }=\frac{20 \times(20-1)}{2} \\
& 10 \text { Luminance Levels } \times 2 \text { Contexts }- \text { Itself }
\end{aligned}
$$

Research Question:

Can we reduce the amount of trials and consequently the experiment's duration, for a fixed set of unique stimuli, without impacting the quality of the encoding function recovered using

MLCM?

Proposed Method 1:

Remove trials with luminance difference of >0.2 for same context

Remove trials with luminance difference of >0.5 for different context

Cut down Matrix 1560/2850 Trials 45,3\%

Preliminary results Static

Original

Static cut down:

- $45,3 \%$ efficiency increase
- No decrease in accuracy (<0.4\%)

How do actual results look like?

What else can be done?

- Fine tune static method
- Use other methods
- Vary the ground truth function
- Vary noise levels
- More Luminance Levels

- More Contexts (Size of Targets)

