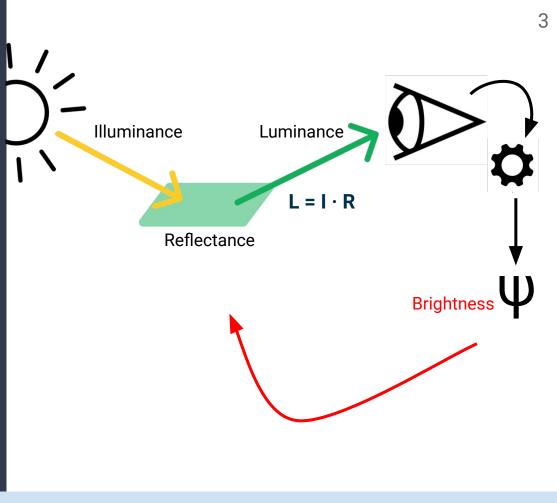

Investigating two models for Brightness Perception - ODOG and BIWaM

Symposium 2024

Sebastian Keil

Light in the environment

- **Illuminance**: The amount of light incident on an object.
- Reflectance: The proportion of incident light reflected by an object.
- **Luminance**: The amount of light reflected by an object.


Introduction

Modelling Vision

Research Question

Humans percept luminance

- From the Luminance the visual system generates the Perception ψ.
- Luminance is a physical variable, while Lightness and Brightness are the subjective experiences of it.
- The problem now is to understand the environment, even if the luminance we can sense could be made by an infinite number of real world situations.

Introduction

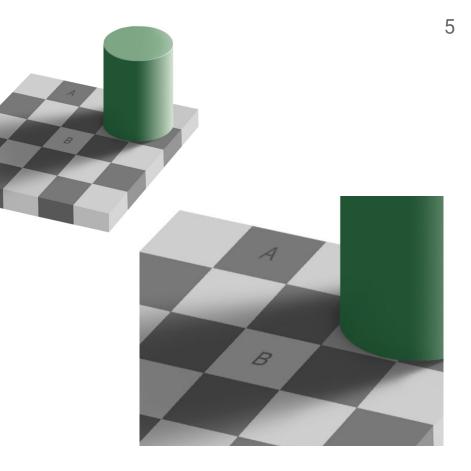
Modelling Vision

Research Question

Brightness and Lightness

- The surfaces of the walls in the photograph appear uniformly white, a **lightness judgment**
- They are brighter in some places, due to the presence of shading and shadows in some places than others, a brightness judgment

Kingdom, Brightness and Lightness 2014, The New Visual Neurosciences


Introduction

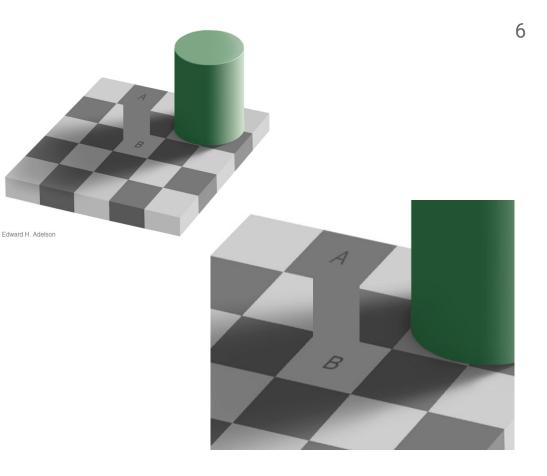
Modelling Vision

Research Question

Challenging the visual system

- A good representation of
 Brightness Perception is the
 Checkerboard Shadow Illusion
 from Adelson (2000).
- The Patches A and B look different in Color, so their Lightness is different

Introduction

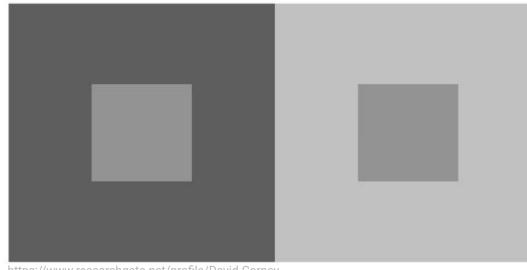

Modelling Vision

Edward H Adelson

Research Question

Perception is different from sensing

- But the Luminances coming from both patches are the same.
- So our experience of luminance is not what we actual sense at the retina.


Introduction

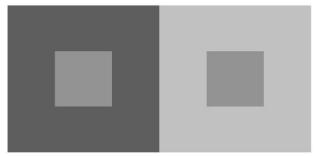
Modelling Vision

Research Question

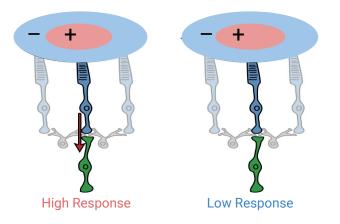
Simple stimuli

- The precepts of brightness and lightness become synonymous.
- The patches appear different in brightness, but are identical
- The surrounding of the patches has an impact to their perception
- We need another explanation for stimuli, that lack illumination cues

https://www.researchgate.net/profile/David-Corney


Introduction

Modelling Vision


Research Question

Receptive field processing

neurons create receptive fields
 which can provide an explanation
 to simultaneous brightness
 contrast

https://www.researchgate.net/profile/David-Corney

https://openbooks.lib.msu.edu/app/uploads/sites/6/2021/03/LightInCenter.png

Introduction

Modelling Vision

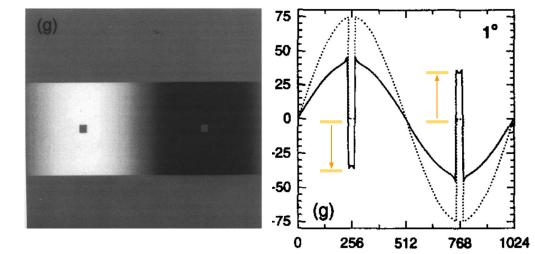
Research Question

Modeling receptive fields as spatial filter

Adelson, E. H. (2000). Lightness perception and lightness illusions.

-1 45 81 87 -1 -1 -1 -1 194 203 215 255* 8 -1 -1 164 116 131 -1 -1 Filter Input Output

- It's easy to model the receptive fields as filters.
- To apply the filter we can use a
 Convolution sliding a filter over an image and computing the sum of element-wise multiplications.


Introduction

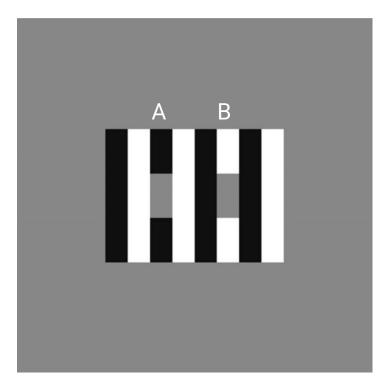
Modelling Vision

Research Question

Multiscale spatial filtering models

- 1997 Blakeslee and McCourt developed the DOG model using the concepts of center-surround fields.
- They used a filterbank with filter of different sizes
- They could replicate human perception to several illusions.

Blakeslee B, McCourt ME. 1997, Similar mechanisms underlie simultaneous brightness contrast and grating induction


Introduction

Modelling Vision

Research Question

Spatial filtering models cannot account for White's Effect

 Patch A has mostly white surrounding but looks brighter, patch B vise versa.

White 1981

Introduction

Modelling Vision

Research Question

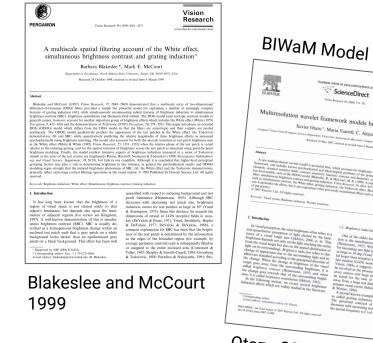
Oriented spatial filtering models

- **O**riented **DOG** model with anisotropic filter
- The Filterbank is now selective also for orientation

. . 0

Betz, T., Shapley, R., Wichmann, F. A., & Maertens, M. (2015)

Introduction

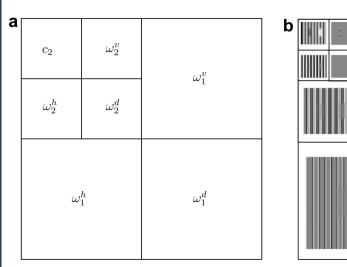

Modelling Vision

Research Question

ODOG and BIWaM Models

BIWaM is also a Multiscale-Spatial-Filtering model, but uses a wavelet transformation

ODOG Model


Introduction

Modelling Vision

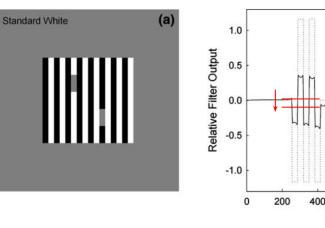
Research Question

BIWaM Model

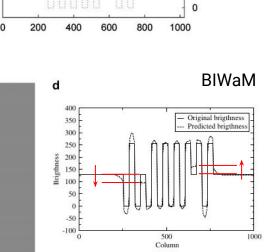
- The **BIWaM** model decomposes the Image into wavelet planes, which have 3 different orientations and downsample the image for each level of decomposition

Otazu 2007

Introduction


Modelling Vision

Research Question


Methods

Oriented spatial filtering models can account for White's Effect

 They can account for Brightness assimilation in White's Effect and other Illusions

C

ODOG

250

200

150

100

50

Introduction

Modelling Vision

Research Question

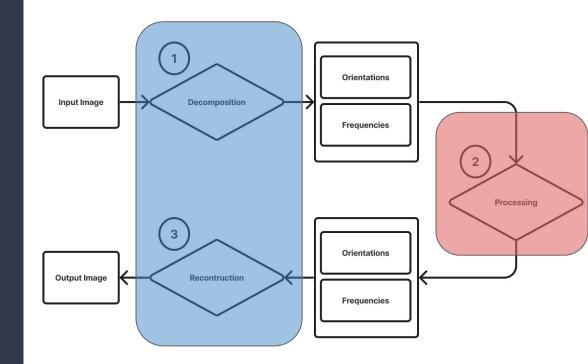
How similar are the ODOG model and the BIWaM model?

- Does the Wavelet Transformation differ from the Filterbank Decomposition?
- How does the reweighting "in between" differ, what part has the most impact?

ODOG Model

BIWaM Model lable online at www.sciencedirect.or ScienceDirect Vision Research 48 (2008) 733-251 Vision Research Multiresolution wavelet framework models brightness induction effects Xavier Otazu ⁴, Maria Vanrell, C. Alejandro Párraga reast sensitivity function, contrast non-linearities add Backeslee, B., & McCourt, M. E. (1999), A Aryunade Visual system; Brightness induction: Wass 1.1. Briphmens induction effect ton-quantitative perception of light elicited by the lumi same of a visual target (see Gikhrist, 2006, p. 6). The en depends not only on the light rev rge as 10 deg (Y and & Arr n the change in brigh owards that of the sar tann, 1955) and wi lowing section, we review several brightness rets which are widely studied in the literature 80(5 - see from matter © 2007 Elsevier Lui: All rights as wassing test field, but a Otazu 2007

16


Introduction

Modelling Vision

Research Question

Similarities of both Models

- In general they show a similar structure.
- Steps 1 and 3 are necessary to do reweighting on scale and orientation specific channels

Introduction

Modelling Vision

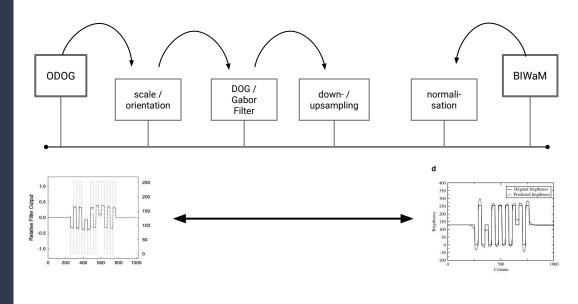
Research Question

Differences of both Models

 They use different approaches in all three steps

		1
Step	ODOG	BIWaM
Decomposition	Filterbank - Filter size changes - 6 orientations, 7 scales - Gaussian function	Wavelet Transform - Image size changes "Downsampling" - 3 orientations, >7 scales - Gabor function
Recomposition	- Summation	- Upsampling - Summation?
Processing	- Weighting with f ^{0.1} - Normalization globally	 Weighting with own CSF Normalization in wavelet planes?

18


Introduction

Modelling Vision

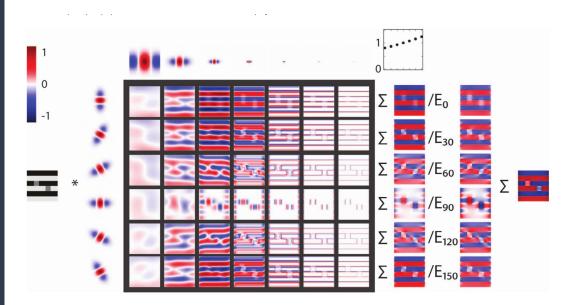
Research Question

Narrow down the search for crucial Differences

 The plan is to modify the ODOG model's source code to do the same processing as the BIWaM model including down- and upsampling, same filter function and same amount of orientations and scales

Introduction

Modelling Vision

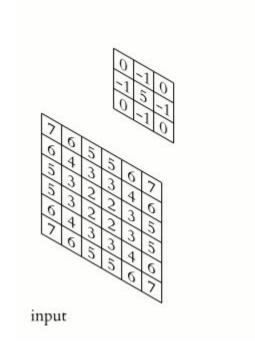

Research Question

Thank You

Any Questions?

ODOG Model

- Oriented DOG model
- A Filterbank is used to generate channels which are sensitive to different features of the input image


Betz, T., Shapley, R., Wichmann, F. A., & Maertens, M. (2015)

Introduction

Modelling Vision

Research Question

Kernel usage

wikipedia.org/wiki/Kernel_(image_processing)

Introduction

Modelling Vision

Research Question

First Comparisons

output

different Kernels

Operation	Kernel w	Image result g(x,y)
Identity	$\left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right]$	C'
Edge detection	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	E P
	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	C.
Gaussian blur 3 × 3 (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	~
Gaussian blur 5 × 5 (approximation)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C

wikipedia.org/wiki/Kernel_(image_processing)

Introduction

Modelling Vision

Research Question