Theoretical evidence for an active model of edge sensitivity in human lightness perception

Lynn Schmittwilken and Marianne Maertens
Science of Intelligence, Technische Universität Berlin, Germany
L.Schmittwilken@tu-berlin.de; Marianne.Maertens@tu-berlin.de


Acknowledgements: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC 2002/1 “Science of Intelligence” – project number 390523135.

(1) Introduction
- Our visual system responds best to luminance changes in space (=edges) and time [1]
- Often, early vision models focus only on spatial information like multiscale spatial filtering, assuming stable retinal images during fixation
- However, fixational eye movements (FEMs) are crucial for visual processing [2]
- Can we account better for human edge sensitivity if we incorporate active-sampling via FEMs into multiscale spatial filtering models?

(2) Methods
- Challenging test case for multiscale models
- Can we reproduce the spatial-frequency-specific effect of narrowband noise on lightness perception [3]? (see Demo)
- We test the edge detection performance (EDP) of our model on White’s stimuli masked with narrowband noise
- Comparison of performance with control models
- Disclaimer: we assume that the effect is mediated by responses to luminance edges

(3) Demo: MF narrowband noise diminishes White’s illusion

(4) Model architecture: Active edge detection

(5) Control models
1. Multiscale filtering: Model component; omits differencing operation
2. Differencing: Model component; omits multiscale filtering operation
3. Canny: Alternative model; standard computer vision approach
4. Narrow filtering: Alternative model; narrow SF tuning (cfs: 1.4 – 5 cpd), no active-sampling

(6) Comparison of model and control outputs

(7) Comparison of edge detection performances (EDP)

(8) Conclusion
- Edges naturally emerge in multiscale filter responses if we incorporate FEMs
- Responses are specific to luminance edges (unlike spatial multiscale models)
- Reproduction of spatial-frequency-specific interference on early visual processes
- Outlook: test human edge sensitivity in noisemasking experiments with narrowband noise & extend model to lightness perception model