
Extracting edges in space and time during visual fixations

Lynn Schmittwilken and Marianne Maertens
Science of Intelligence, Technische Universität Berlin

Assuming that vision is stable during fixations, existing
edge models typically employ orientation-sensitive spatial
mechanisms to mimic human edge processing. However,
recent studies suggest that small eye jitters that occur
during fixational pauses are functionally relevant for hu-
man vision [1]. To test this notion, we therefore developed
a spatial edge model with standard components of early
vision models (spatial filtering, non-linear normalization,
integration), extended it by a temporal domain and fed
it with a time-varying input as if sampled by fixational
eye movements (FEMs) [2]. The model successfully ac-
counts for human performance in multiple edge tasks and
notably does so without relying on orientation-sensitive
mechanisms.
The model structure is shown in Figure 1. We simulate

the effect of FEMs by applying ocular drift to the retinal
input (Fig. 1B) resulting in a time series of slightly shifted
input images. Drift is simulated as Brownian motion over

T = 0.2s with a diffusion coefficient of D = 20arcmin2

s and
a temporal frequency of f = 100Hz. The dynamic input
is then filtered in space and time (Fig. 1C). In space,
we applied five spatial DoG filters Gi(fx, fy) with peak
spatial frequencies (SFs) between 0.62 and 9.56 cpd in
octave intervals defined as

Gi(fx, fy) = e−2π2s2i (f
2
x+f2

y ) − e−8π2s2i (f
2
x+f2

y ), (1)

where fx and fy denote the SFs in cpd and s1−5 =
[0.016, 0.032, 0.064, 0.128, 0.256] deg controls the spatial
scale of the DoG filters.

In time, we used a bandpass filter H(ω) which peaks at
9.52 Hz and no sensitivity to static inputs defined as

H(ω) = m1 e
−(

|ω|
m2

)2 / (1 + (
m3

|ω|
)m4), (2)

where ω denotes the temporal frequencies in Hz, m1 = 1,
m2 = 22.9, m3 = 8.1, m4 = 0.8, and H(ω = 0) = 0.
After filtering the dynamic input in space and time, we

first integrate the filtered outputs across time by comput-
ing the squared mean separately at each spatial scale i
(Fig. 1D). Then, we normalize the integrated signals by
their mean activation Mi (Fig. 1E). Finally, we sum the
normalized signals over all scales i, creating the final 2d
model output (Fig. 1F). We quantify model performance
by correlating the model output with a ground truth edge
template (Fig. 1G).

We tested the model on contour detection in natural
scenes (realistic task) and on edge sensitivity in narrow-
band noise (controlled task). The model captured human
performance reasonably well [2]. Our results show that
when considering the spatial and temporal properties of
the early visual system, FEMs facilitate human edge pro-
cessing without relying on orientation-sensitive processes1.
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1Link to all model code: https://github.com/computational-
psychology/schmittwilken2022 active-edge-model
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Figure 1: Model structure from [2]
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