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Abstract

Fixational Eye Movements (FEMs) are considered relevant for encoding spatial edges as temporal

modulations in the retina. Visual processing therefore is fundamentally spatiotemporal. We mimic

visual processing with Convolutional Neural Networks (CNNs), which only work with purely spatial

images. In this thesis, we investigate whether simulating FEM induced spatiotemporal processing on

images facilitates object recognition in CNNs.

We approximate FEM induced spatiotemporal processing in the retina via di�erence images. We

train two CNNs on the ImageNet dataset for object recognition. We train the �rst CNN on standard

grayscale images (CNN-gray). We train the second CNN on di�erence images (CNN-di�). We compare

accuracy scores of both CNNs on natural images. We also compare accuracy scores on the ImageNet-

Sketch dataset because CNNs typically are reported to perform poorly on sketches. In both cases,

natural images and sketches, the CNN-gray achieves higher accuracy scores than the CNN-di�. We

discuss possible explanations for these results and potential limiting factors of our approach. We

conclude that FEMs do not facilitate object recognition in CNNs.

Zusammenfassung

Augenbewegungen während visueller Fixation (FEMs) sind relevant, um räumliche Kanten als zeitliche

Änderungen in der Retina zu kodieren. Visuelle Verarbeitung geschieht demnach grundlegend in

Raum und Zeit. Wir imitieren visuelle Verarbeitung mit Convolutional Neural Neutworks (CNNs), die

nur mit räumlichen Bildern arbeiten. In dieser Thesis untersuchen wir, ob Objekterkennung in CNNs

vereinfacht werden kann, indem räumliche und zeitliche Verarbeitung, die durch FEMs induziert wird,

auf Bildern simuliert wird.

Wir approximieren durch FEMs induzierte räumliche und zeitliche Verarbeitung in der Retina über

Di�erenzbilder. Wir trainieren zwei CNNs auf dem ImageNet Datensatz zur Objekterkennung. Wir

trainieren das erste CNN auf gewöhnlichen Graustufenbildern (CNN-gray). Wir trainieren das zweite

CNN auf Di�erenzbildern (CNN-di�). Wir vergleichen die Genauigkeit beider CNNs auf natürlichen

Bildern. Wir vergleichen die Genauigkeit beider CNNs auch auf Skizzenzeichnungen, weil CNNs

typischerweise schlecht auf Skizzenzeichnungen abschneiden. In beiden Fällen, natürliche Bilder

und Skizzenzeichnungen, erreicht das CNN-gray höhere Genauigkeitswerte als das CNN-di�. Wir

diskutieren mögliche Erklärungen für unsere Ergebnisse und potentielle einschränkende Faktoren

unserer Herangehensweise. Zusammenfassend schließen wir, dass FEMs die Objekterkennung in

CNNs nicht vereinfachen.
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1 Introduction

1.1 Luminance Edges

We perceive the world around us through di�erent modalities. Probably the most important

modality is visual perceptionwhich starts in our eyes. Light that is re�ected o� the environment

enters through our eyes and hits the retina. The retina consists of several layers of cells. First,

the incoming light is transduced to an electric signal by roughly 130 million photoreceptors

per eye. The electric signal then is processed by horizontal, bipolar and amacrine cells. The

�nal processing step in the retina is performed by ganglion cells before the signal leaves the

retina and is propagated to higher structures of the visual system.

Processing the full incoming signal from phototreceptors might be metabolically too

expensive (Laughlin et al., 1998). This might be the reason why humans and other mammals

have evolved to e�ciently encode sensory input in the early visual system, e.g. the retina.

Single-cell recordings of retinal ganglion cells revealed that the visual system is most sensitive

to luminance changes of the sensory input in space and time (Frishman et al., 1987). Luminance

is the objective measure for the amount of light that re�ects o� or is emitted from an object.

In the following, we will describe the relevance of spatial and temporal luminance edges for

visual processing.

A spatial luminance change is the transition between bright and dark regions in space, as it

exists for example in an image of black and white stripes. We also refer to spatial luminance

changes as spatial luminance edges. It has been shown in physiological studies that retinal

ganglion cells respond best to edges because of how their receptive �elds are organized (Croner

& Kaplan, 1995). The receptive �eld of a ganglion cell refers to the proportion of the visual

�eld which elicits a response in the cell. A temporal luminance change occurs when the light

intensity, that a �xed point on the retina experiences, changes over time. This happens, for

example, when �ickering light hits the retina or when an image of black and white stripes
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1 Introduction

moves across the retina (orthogonal to the stripes). Physiological investigations revealed that

the receptive �elds of retinal ganglion cells have speci�c spatial and temporal characteristics.

Spatially, they are roughly circular and show an antagonisitic center-surround relationship.

That is, when light hits receptors in the center of the receptive �eld, this induces an excitatory

e�ect to the ganglion cell, and when light hits receptors in the surround of the receptive �eld,

this induces an inhibitory e�ect to the ganglion cell, or vice versa. Likewise, there are two

types of retinal ganglion cells (Croner & Kaplan, 1995). The �rst type responds best if light hits

the center of the receptive �eld and the surround is dark. The second type responds best if light

hits the surround and the central portion is dark. If every receptor in the receptive �eld receives

the same amount of light, the excitatory and inhibitory e�ects cancel out. If the stimulus

is distributed unequally over the center and surround, e.g. when a luminance edge enters

the receptive �eld, the ganglion cell’s �ring rate changes according to the ratio of excitatory

to inhibitory signals (Ku�er, 1953). Likewise, spatial luminance edges are considered to be

stimuli which e�ectively stimulate retinal ganglion cells. Experiments by Anstis (2013) even

suggest that the perception of surfaces fully depend on the visibility of the surrounding edges.

By intervening with edge-sensitive processes through adapting our photoreceptors to the

�ickering outline of a surface, the surface perceptually disappears and the perceptual "hole" is

�lled completely with information from the surround.

Temporally, retinal ganglion cells respond best to luminance changes in a speci�c range

of temporal frequencies and worse to stimuli that change too quickly or not at all (Frishman

et al., 1987). In fact, an image that is stabilized to the retina fades from our perception until it

disappears entirely (Ditchburn & Ginsborg, 1952; Riggs & Ratli�, 1952; Yarbus, 1967). Retinal

stabilization is accomplished by paralyzing the ocularmotor system or moving the distal

stimulus following the eye movements such that the movements e�ectively cancel out and

the stimulus ends up �xed (stablized) to the retina (Santini et al., 2007).

The human retina is designed to report spatial and temporal changes in the visual scene.

Therefore, homogeneous surface information is neglected and edges yield strong neural

responses. Similarly, the retina is only sensitive to temporal modulations around a speci�c

temporal frequency, and does not respond to static inputs. This is an e�cient code to represent
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our surround and probably is crucial for us to be able to comprehend the amount of information

our eyes are confronted with.

1.2 Fixational Eye Movements (FEMs)

We need to move our eyes in order to �xate objects of interest because the fovea, i.e. the spot

of highest acuity in the retina, only covers a small portion of our visual �eld. However, even

during these �xation periods our eyes are always in motion. Fixational eye movements (FEMs)

are small involuntary eye movements that occur during visual �xation (Yarbus, 1967). For a

long period of time, FEMs have been neglected (Steinman et al., 1973) or considered obstructive

for high acuity vision because it was assumed that FEMs cause the retinal image to blur which

reduces �ne spatial details (Packer & Williams, 1992). Besides that, the only function that was

sometimes attributed to FEMs was to prevent perceptual fading (Martinez-Conde et al., 2004).

Nowadays, however, evidence has accumulated that FEMs are part of the active sampling

strategy of the visual system to encode spatial information within a spatiotemporal code

(Rucci & Victor, 2015). FEMs are microscopically small. For comparison, our index �nger nail

at arm’s length roughly covers 1 degree (���) of our visual �eld, whereas FEMs are as small

as <1 minute of arc (60 ������ = 1 ���) and maximally as large as 1 ��� (Martinez-Conde

et al., 2004). Further analyses of recorded gaze trajectories revealed three subcategories of

FEMs: micro-saccades, ocular drift and tremor (Martinez-Conde, 2006).

Microsaccades are the largest and fastest FEMs. They cause the retinal image to move across

up to hundreds of photoreceptors (Møller et al., 2002). Due to their size, microsaccades are

proposed to be the most e�ective FEM to prevent visual fading by "refreshing" underlying

photoreceptors (Carpenter, 1988; Ditchburn et al., 1959). Microsaccades also appear to keep

the gaze on the �xated object by counteracting ocular drift (Cornsweet, 1956).

Ocular drifts occur between consecutive microsaccades. Drifts show a continuous meander-

ing motion that often is described as Brownian motion (e.g. Kuang et al., 2012). Drift causes the

retinal image to be moving incessantly over photoreceptors during periods of visual �xation.

It has been suggested that this constant motion of eyes is essential for the visual system
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to actively encode spatial information within a spatiotemporal signal (Kuang et al., 2012).

Likewise, the spatiotemporal modulations that emerge from drift motions have been proposed

to reduce redundant information when viewing natural scenes by equalizing the spectral

power across a wide range of spatial frequencies (Kuang et al., 2012). Moreover, Kuang et al.

(2012) and Rucci and Victor (2015) propose that through ocular drift, edge extraction is already

started in the retina. Due to ocular drift, the retinal image gets slightly shifted across the

receptive �elds of retinal ganglion cells over time. Since retinal ganglion cells respond best to

temporally changing inputs which mainly occur at the edges of objects, drift further enhances

information at luminance edges (Rucci & Victor, 2015). Thus, drift can be considered to play a

central role in extracting edge signals from the sensory input.

Tremors are superimposed to ocular drift and present high frequency (�90��) jitter-like
movement of gaze with amplitudes that match the diameter of single retinal photoreceptors

(Martinez-Conde, 2006). The function of tremors is still debated. Some suggest, because of the

size of these movements, tremors might be caused by neural noise in the ocularmotor system

(Carpenter, 1988) or consist of artifacts in the recording devices.

1.3 Convolutional Neural Networks (CNNs)

1.3.1 CNNs as Models for Visual Perception

CNNs are commonly referred to as state-of-the-art computational model for visual perception

(Nandhini Abirami et al., 2021). For simple recognition tasks, e.g. handwritten digit recognition,

they perform very well and achieve human-like performance (Cireşan, Meier, & Schmidhuber,

2012). A reason for their success in visual recognition might be the mathematical operation

that separates CNNs from other arti�cial neural networks: the convolution.

A convolution can be thought of as applying a �lter to an input image at every location

in the image analogous to cells in the visual system that process the incoming signal based

on their receptive �eld properties. To better describe how convolutions work, let’s imagine

a single convolutional �lter that slides over a signal. In our case the signal is an image in

which we want to recognize objects. The convolutional �lter scans a neighbourhood of
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pixels in the image instead of the whole image, before sliding to the next neighbourhood of

pixels. By scanning only a limited area of an image at once, small features of objects might be

detectable more easily because the �lter won’t be misled by the information in the remaining

image, which might contain other object speci�c features. This is similar to how we scan

an image for small details; we systematically investigate small regions to check for details

and move our searchlight to another small region if we haven’t found what we were looking

for. A convolutional �lter wouldn’t stop if it had found the feature but would always slide

over the entire image and respond whether or not the feature is present1. In further steps,

detected features can be aggregated to identify the entire displayed object. For example, when

convolutional �lters detect a lot of straight lines and rectangles, then the image might show a

building of some kind. A convolutional �lter can only detect one single feature best. In order

to recognize objects faster, we want a CNN to detect multiple di�erent features simultaneously.

For that reason, multiple convolutional �lters are organized as a convolutional layer in the

network. Which �lters a CNN should apply to images to recognize certain objects best is the

result of training a CNN (see Section 1.3.2).

A convolutional �lter responds to a �xed size portion of the signal, depending on its �lter size.

Similarly, a retinal ganglion cell responds to the light that hits receptors in its receptive �eld,

which is only a limited section of the entire retinal image (Frishman et al., 1987). Nevertheless,

retinal ganglion cells also respond to temporal modulations of the signal (Frishman et al., 1987).

Whereas convolutional �lters, and most CNNs in general, do not consider signal changes

over time but only work with purely spatial information. This is a potentially fundamental

misconception about CNNs and how they are used to model the human visual system because

the human retina is only sensitive to temporal changes.

1.3.2 Training a CNN

To understand how Convolutional Neural Networks (CNNs) work, we go into standard

Arti�cial Neural Networks (ANNs) �rst.

1 This is a simpli�cation. Usually the responses of convolutional �lters are not binary but continuous.
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ANNs originate from Rosenblatt’s Perceptron (Rosenblatt, 1958). The Perceptron describes

a mathematical model of a neuron’s basic functionality. The Perceptron receives multiple

inputs that get weighted individually. The weighted sum of inputs is fed to the Perceptron’s

activation function that decides whether or not the Perceptron �res. Depending on the speci�c

activation function, it can also decide on how strongly the Perceptron �res according to the

input intensity, a scenario that is not possible with real neurons because, due to the uniformity

of an action potential, they encode intensity with �ring frequency, not with amplitude.

To expand the idea of an arti�cial neuron to an arti�cial neural network, many neurons

are organized in layers that are connected to previous and succeeding layers (Multilayer

Perceptron; Gardner & Dorling, 1998). The �rst layer of neurons (input layer) receives the

raw net input, therefore there must be one neuron for each input feature. The neurons in the

last layer (output layer) represent the net predictions, i.e. there is one neuron per class that

indicates that the net input belongs to the neuron’s dedicated class. Layers that are neither

the input nor output layer are referred to as hidden layers.

Each neuron in the hidden layers and output layer receives the output of all neurons in

the previous layer. We call layers, that are connected to their previous layer in this way,

fully-connected or dense layers. In addition to the individual weights for di�erent inputs, a

neuron also receives a bias input. The bias is independent from the net input and represents

a base activation of the neuron. This bias usually is realized as an additional weight to a

constant arti�cial 1 input. We include the bias term when referring to weights.

Training an ANN. The knowledge of an ANN about a certain domain is represented in

the entirety of its weights. Adjusting these weights is how ANNs learn, therefore we brie�y

cover the general training procedure of ANNs.

In order for an ANN to learn the di�erence between several objects, it has to observe many

objects. This kind of learning is also called "supervised learning" because the observations

come with ground truth labels stating what the object is, e.g. if there is an image of an apple

(the object) there is also a label stating "this is an apple". During training, the ANN can compare

its predicted label of an object with the ground truth label to evaluate its learning progress.

6



1.3 Convolutional Neural Networks (CNNs)

Aim of learning is not to perfectly discriminate objects in the available training data but

to learn discriminants that also apply to data not contained in the training data. For that

purpose the available data is divided into smaller datasets. The train set is used to actually

train the ANN. The validation set is used to monitor the generalization capability of the ANN.

This is accomplished by checking if the learned discriminants also apply to the validation

set which itself is not used by the ANN to extract these discriminants. The test set is used to

�nally report the generalization performance of the ANN. It is larger than the validation set

and therefore provides a more reliable evaluation. The three subsets of the available data are

disjoint.

The ANN learns the discriminants in an iterative process, during which it receives the whole

train set as input once per iteration (epoch). In each epoch the network predicts each one label

for each input stimulus. In our case, it would therefore predict the object category for each

input image. The prediction error is determined by an error function (loss function). The loss

function calculates the di�erence between prediction and ground truth and returns a real valued

measure of the mismatch. The prediction error is calculated based on the network’s output

and is propagated back through the network. At each step in backpropagation the ANN’s

weights are adjusted according to the learning schedule provided by the chosen optimizer.

A popular choice for such an optimizer is a variant of Gradient Descent (e.g. Bottou, 1991;

Kingma & Ba, 2017) that minimizes the loss function by adjusting a weight in the direction

of the loss function’s gradient with respect to the weight. The gradient shows how each

individual weight should be changed to minimize the overall loss function. The size of the

weight adjustment steps is in�uenced by the optimizer’s learning rate, a small positive scaling

factor.

Adjusting the weights of an ANN often does not happen with the prediction error on the

whole train set at once but in batches, i.e. smaller portions of the training data. Here, the train

set is divided into multiple disjoint batches. The prediction error on a batch is used to adjust

weights as described before. With a large batch size few but large adjustments are done. With

smaller batches small adjustments happen more frequently.
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Smaller recognition and classi�cation tasks with small datsets and few classes, such as digit

recognition (Lecun et al., 1998) can be tackled e�ectively with large Multilayer Perceptrons

(Cireşan, Meier, Gambardella, et al., 2012). ANNs liks this have enormous amounts of weights

which makes them hard to train if the problem to solve gets more complex, e.g. higher

dimensional input and more classes. Convolutional Neural Networks (CNNs) come with way

less weights which makes them easier to train. The smaller weight count also means that a

CNN cannot hold as much information as a standard ANN of comparable size. Despite the

theoretically smaller knowledge capacity, CNNs perform remarkably well in large scale object

recognition (Krizhevsky et al., 2012) and have since been handled as state-of-the-art visual

recognition method.

1.4 Aim of this Thesis

Visual processing is in its core spatiotemporal and the visual system is most sensitive to

information that is changing over time. Temporal modulations that are caused by ocular drift

are supposed to start the extraction of edges in the retina (Rucci & Victor, 2015). CNNs are

often used to model the visual system. However, CNNs typically are trained on static images,

and thus do not consider the relevance of temporal modulations for visual processing. in this

thesis, we want to investigate to which extent a classical CNN bene�ts from a visual input

that re�ects that the visual system is only sensitive to temporally changing inputs.

For this, we want to investigate whether a CNN performs better if it is trained on images

that are actively derived from ocular drift and the sensitivity of the visual system to temporally

changing inputs (here called "di�erence images"), compared to a CNN that is trained on

standard achromatic images. We are expecting to achieve better performance of the �rst CNN

because we assume that drift reduces redundant information of low-contrast surfaces (Rucci

& Victor, 2015) and thus will emphasize the most relevant regions with higher variance in

luminance, i.e. luminance edges.
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Second, Singer et al. (2020) reported that CNNs, that were trained on natural images, perform

poorly when applied to more abstract data like line-drawings and sketches. Since ocular drift

might be involved in extracting edges (Rucci & Victor, 2015) and thus accentuates contour

over surfaces similar to sketches, we want to investigate whether CNNs trained on di�erence

images will recognize sketches more accurately than CNNs trained on natural grayscale

images.

We assume that drift accentuates contour over surfaces similar to sketches, which leads to

the assumption, a CNN that is trained on drift images will predict sketches more accurately

than a CNN that is trained on natural images.

1.5 Summary

Our visual system is most sensitive to temporal modulations in the sensory input and therefore

is in its core spatiotemporal. CNNs are often used to model the visual system, although CNNs

work with purely spatial images and neglect signal changes over time. We wanted to test if a

CNN bene�ts from including temporal information, that result from ocular drift, in the training

images. To accomplish this, we generated a drift trajectory that simulates the moving eye

during �xation. We created two nearly identical but slightly o�set images from one training

image. The o�set is determined by the generated drift trajectory. The pixel-wise di�erence of

both slightly o�set images can be interpreted as the temporal change of the retinal image as it

drifts across the photoreceptors. We call the resulting image di�erence image. A di�erence

image holds information about temporal changes but is still purely spatial, hence CNNs can

be trained on di�erence images.

To test our hypotheses, we trained two CNNs on the same dataset. We trained the �rst CNN

on grayscale images (CNN-gray) and the second on di�erence images that we derived from

ocular drift (CNN-di�). The accuracy scores on the test set of both CNNs revealed no support

for our assumption that considering visual modulations as would occur from ocular drift is

bene�cial for object recognition in CNNs. Furthermore, our results indicate that considering

visual transients as would result from ocular drift do also not facilitate object recognition on
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images with sketches of objects. Finally, we discuss our results and potential limiting factors

of our study.
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2 Methods

2.1 Overview

In this thesis, we want to investigate whether CNNs bene�t from considering the temporal

modulations caused by ocular drift. For this, we compare object recognition performance of

two CNNs. The �rst CNN (CNN-gray) we train on natural grayscale images. The second CNN

(CNN-di�) we train on images that also take the sensitivity of the visual system to temporal

modulations into account. In our simulation the temporal modulations result from ocular

drift. To simulate the e�ect of ocular drift on the retinal image, we generate a trajectory that

represents the moving eye during �xation. We apply the generated drift trajectory to the input

images to approximate the temporal changes of the sensory input between two consequent

drift motions. This approximation we call di�erence image.

In the following, we describe how we approximate the e�ect of ocular drift on images. We

describe the dataset that contains the training images for both CNNs. We also describe the

dataset of images that we use to test object recognition performance of both CNNs on sketches

of objects. Afterwards, we describe the architecture of both CNNs and the general training

procedure that both networks share. Next, we go into details of how we prepare the images

individually for each of the CNNs. Last, we describe both of our experiments that we set up to

test our hypotheses.

2.2 Modelling the E�ect of Dri� on Images

2.2.1 Computational Model of Dri�

Ocular drift creates a continuously moving retinal image. We simulate the shift of the retinal

image caused by drift as a two-dimensional Brownian motion process (Kuang et al., 2012). To

be accurate, we need to choose �tting parameters for the Brownian motion which samples

from a two-dimensional zero-mean normal distribution. The standard deviation controls
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the amplitude of single steps in the drift trajectory and is calculated from the number of

dimensions �, a di�usion coe�cient � and the sampling frequency � . We choose � = 2 and� = 20�����2��1 = 203600���2��1 (Kuang et al., 2012). The visual system is most sensitive for

temporal frequencies in the range of 5 to 30�� (Frishman et al., 1987). In order to account

for that, we need to sample with at least double the frequency of this range (Shannon, 1949).

We decided on a sampling frequency of � = 100��. This results in a standard deviation of�� = �� � �� � �, where �� = � �1 is the time between two consecutive steps. The number of

steps to simulate as a Brownian motion process is calculated by � times an observation time

span � . We choose � = 200�� which approximately matches the duration of inter-saccadic

intervals (Martinez-Conde et al., 2004).

The generated drift trajectory is de�ned in degree (���). Referring to the angle that an

object covers in our visual �eld is convenient because, by doing so, we directly measure the

size of the proximal stimulus, i.e. the object in the retinal image. Visual angle includes the size

and distance of the object, i.e. distal stimulus. To be able to apply a trajectory to images, which

are de�ned in pixel (��), we need to convert the trajectory from ��� to �� by multiplying

with a conversion factor (��� = "pixel per degree") that de�nes how many pixels correspond

to one degree of the retinal image. We decided on ��� = 40 which is large enough to detect

the e�ect of drift but small enough to have su�ciently large input images. Later, we will

train our networks on 224 ◊ 224�� images. They will represent a retinal image of 5.6 ◊ 5.6 ���
which is about the size of the fovea with about 5 ��� in diameter (Kolb, 1995). Additionally,

the trajectory is quantized to whole pixel values by rounding to the nearest integer in both

dimensions, as visualized by the green (sampled) and red (quantized) trajectories in Figure

2.1.

2.2.2 Approximation Model via Di�erence Images

Simulating ocular drift and its e�ect on visual processing is a crucial step in our experiments.

Here, we are focusing on the assumption that drift highlights luminance edges in the temporal

domain (Kuang et al., 2012). Further challenge exists because CNNs only process spatial
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2.2 Modelling the E�ect of Drift on Images

Figure 2.1: Di�erence image creation. (Left) One example of a sampled and quantized drift trajectory. A new

trajectory is generated for each training sample individually. (Right) Our di�erence images are the result of

subtracting a slightly o�set crop from the center crop of the original image. The o�set is determined by the �rst

quantized trajectory step that leaves the coordinates origin. Notice that after computing the absolute values of

our di�erence images, areas with high variance in luminance are highlighted, i.e. luminance edges.

information. This limitation urges us to encode luminance edges, that we assume to be

highlighted in the temporal domain, in a spatial format. We came up with a computationally

inexpensive approximation that we call di�erence image.

First, we generate a quantized drift trajectory (see Section 2.2.1). We perform two crops

from the original image. The �rst is a center crop. The second crop is slightly o�set from the

center. The o�set is determined by the �rst quantized drift step that leaves the coordinates

origin, which makes it highly unlikely that both crops are identical. The sequence of the two

cropped images represent a time series of the retinal image. By subtracting both images, we get

the temporal change of the moving retinal image in a spatial format that can be processed by a

CNN (see Figure 2.1 "di�. of crops"). Finally, we calculate the pixel-wise absolute values (see

Figure 2.1 "Abs."). In the resulting di�erence image, luminance edges are encoded as non-zero

pixel values because, at a luminance edge, the di�erence of two nearby pixels is larger than

in an equiluminant area. Areas of homogeneous luminance will likewise have zero-values.
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Notice, that this is independent from the area’s original luminance, as can be seen in the �nal

di�erence image; the dog’s rear body and the �oor tiles share (near) zero-values, although in

the original grayscale image they hold very di�erent luminance values. Luminance edges are

detected best if they are oriented orthogonally to the drift direction.

Creating the di�erence images includes performing crops from a source image resolution to

a target image resolution. This is the reason, why the image gets smaller in Figure 2.1 "di�. of

crops". We wanted the source image resolution of the di�erence image creation process to be

as high as possible and such that as little as possible of the images get upsampled. Therefore,

we chose the source resolution to be 320◊320�� . Beyond, the train set resolution drops rapidly

(Figure 2.2). We chose 300 ◊ 300�� as target image resolution, which gives us a 10�� bu�er

in each direction for the o�set crops when creating the di�erence image. We never exceeded

this bu�er in the entire training process.

Figure 2.2: Dataset resolutions. (Left) Roughly 83% of our ImageNet training images are at least 320 ◊ 320��
large. (Right) Coincidentally, the ImageNet-Sketch dataset shows similar percentage for this speci�c resolution.

2.3 Datasets

We use the same dataset to train the CNN, which is trained on natural grayscale images

(CNN-gray), and the CNN, which is trained on the di�erence images (CNN-di�), to make both

networks more comparable. We decided on using the well known ImageNet dataset (Deng
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et al., 2009). Additionally, we use the ImageNet-compatible ImageNet-Sketch dataset (Wang

et al., 2019) to see how well both networks perform on recognizing objects in sketch images.

2.3.1 ImageNet

We need a lot of labeled images that provide a variety of relevant class-speci�c features for

the CNNs to learn how to di�erentiate several classes from each other. In computer vision,

several benchmark datasets for object recognition exist. Here we use ImageNet (Deng et al.,

2009). The ImageNet dataset consists of roughly 15 million high-resolution images in more

than 21, 000 di�erent categories and varying aspect ratios. Because of limited computational

resources, we only use a subset of ImageNet; the same subset that is also used in the ImageNet

Large-Scale Visual Recognition Challenge 2012 (Russakovsky et al., 2015). The ILSVRC-2012

subset consists of 1000 di�erent classes with roughly 1.28 million images in the train set,50.000 images in the validation set and 100.000 images in the test set.

The labels of the test set are not publicly available, so we extracted a custom test set from

the train set. Our test set consists of 100.000 images and shows the same label ratios as the

train set, that way classes are as much represented in the test set as they are in the train set.

Our train set, therefore, remains with roughly 1.18 million images. For simplicity, we refer

to our dataset as ImageNet. Some samples can be seen in Figure 2.3. Note that the dataset

consists of photographs. Images therefore do not display the isolated objects but also include

visual background and surrounds of the object.

2.3.2 ImageNet-Sketch

Since we hypothesize that the CNN-di�, which we will train on images we derive from

ocular drift, recognizes sketches of objects better than the CNN-gray, we want to evaluate

the generalization performance of both CNNs on sketches. To receive reliable evaluations,

we need a fairly large amount of sketch images. ImageNet-Sketch is a dataset consisting

of roughly 50.000 sketches labeled with the 1000 ImageNet labels, which makes the dataset

compatible to our ImageNet-trained CNNs (Wang et al., 2019). The provided high-resolution
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Figure 2.3: ImageNet samples. The displayed images are quadratic center crops resized to 224 ◊ 224�� . Original
images show various aspect ratios and resolutions.

sketches are grayscale images with dark drawing on bright background and come in varying

aspect ratios. Some samples can be seen in Figure 2.4. Note that the sketches show di�erent

degrees of abstraction, i.e. some images show clean line-drawings and some show more details

like shadows and texture.

Figure 2.4: ImageNet-Sketch samples. The displayed images are quadratic center crops resized to 224 ◊ 224�� .
Original images show various aspect ratios and resolutions.
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2.4 CNN Architecture and Training Procedure

2.4 CNN Architecture and Training Procedure

The CNN-gray, which we train on standard grayscale images, and the CNN-di�, which we

train on di�erence images derived from ocular drift, share the same network architecture

(Figure 2.5A), which is highly inspired by the well known AlexNet architecture (Krizhevsky

et al., 2012). In total, each of the networks consist of �ve convolutional layers followed by three

fully-connected layers. Both CNNs minimize the sparse categorical crossentropy1 measure.

We use batch normalization after each convolutional layer to speed up learning (Santurkar

et al., 2018). Batch normalization estimates mean and variance from a batch during training

and transforms each sample to a zero-mean input with unit standard deviation. We use 3 ◊ 3
max-pooling layers with strides of 2 in vertical and horizontal direction. We use the Recti�ed

Linear Unit (ReLU) as activation function on the output of the �ve convolutional layers and

the two fully-connected hidden layers. We apply the softmax activation to the output of the

last layer, which represents the probability distribution of how likely each class label is, given

an input.

The �rst convolutional layer applies 96 kernels of size 11 ◊ 11 ◊ 1 with strides of 4 to the224 ◊ 224 ◊ 1 (achromatic) input image. The output of the �rst convolutional layer is batch

normalized and max-pooled. The second convolutional layer applies 256 kernels of size5 ◊ 5 ◊ 96 with strides of 1. The output of the second convolutional layer is batch normalized

and max-pooled. The third convolutional layer applies 384 kernels of size 3 ◊ 3 ◊ 256 with
strides of 1. The output of the third convolutional layer is batch normalized. The fourth

convolutional layer applies 384 �lters of size 3 ◊ 3 ◊ 384 with strides of 1. The output of the
fourth convolutional layer is batch normalized. The �fth convolutional layer applies 256
�lters of size 3 ◊ 3 ◊ 384 with strides of 1. The output of the �fth convolutional layer is batch

normalized and max-pooled.

We �atten the output of the last convolutional layer with a size of 5◊5◊256 into a 6400-vector
which is passed into two consecutive fully-connected layers that consist of 4096 neurons. Both
fully-connected layers are followed by 50%-dropout which randomly omits half of the neurons

1 We do not use OneHot-encoded class labels, therefore we cannot use the "normal" categorical crossentropy
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during training. This has been shown to help CNNs to learn more robust features (Hinton

et al., 2012). During testing, dropout does not show any e�ect. Finally, the last fully-connected

hidden layer is fully-connected to the 1000-vector output layer.
Overall, we prepared the two CNNs for training as described in Krizhevsky et al. (2012).

We initialized the biases of the �rst and third convolutional layer and the output layer with

zeros. The biases of the three remaining (second, fourth and �fth) convolutional layers, as well

as of the two fully-connected hidden layers, are initialized with ones. At inference time, i.e.

while predicting labels, a neuron’s bias represents its baseline activation because it provides a

constant signal to the neuron’s activation function. By setting the biases of some neurons to

one, we provide positive inputs to the neurons’ ReLUs, which accelerates the training process

in the �rst few epochs. As loss function, we used the sparse categorical cross entropy loss

between the predicted labels and the true labels. We minimized this loss function with a

stochastic gradient descent optimizer with momentum of 0.9 and, in contrast to Krizhevsky

et al. (2012), no weight decay. We shu�ed the training data prior to each epoch and then fed

it to the networks in batches of 128 samples.

Both CNNs, the CNN-gray and CNN-di�, were trained on one GTX 1660S 6GB GPU for

a total of 80 epochs each with an initial learning rate of 0.01. We decided on shrinking the

learning rate by dividing it by 10 as soon as the validation accuracies stagnated. This way,

the networks’ parameters get adjusted by smaller amounts which enables them to learn

�ner-grained discriminants of the classes. We reduced the learning rate after 45 and 65
epochs because previous training runs have indicated that this was the time when validation

accuracies stagnated.

To evaluate object recognition performance of the two CNNs, we calculated and monitored

top-1 accuracy (accuracy, for short) and top-5 accuracy. Top-1 accuracy refers to the percentage

of images a network correctly classi�es. Top-5 accuracy considers an image correctly classi�ed

if its true label is among the �ve labels with the highest probabilities predicted by the networks.

In order to monitor how well training performance generalized to unseen images, we

calculated the accuracy and top-5 accuracy on the validation set.
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2.5 Data Preprocessing and Augmentation

Arti�cial neural networks comewith many adjustable parameters that get adjusted to minimize

the prediction error during training. This does not imply that a CNN performs well on

previously unseen data that was not included in the training data. A network that performs

well on the training data but does not generalize well to new data is considered to be over�tted

(Hawkins, 2004). A lot of research is done to �nd methods on how to prevent networks from

over�tting, e.g. constraining parameters (Moody et al., 1992) and deciding which parameters

to adjust in each step of the learning process (Hinton et al., 2012; Wan et al., 2013).

Foundation of our training procedures is the fairly large amount of over 1.18 million

images from our train set. Nevertheless, training the network on even larger datasets

further reduces the risk of over�tting. One option to circumvent data shortage is to gather

more manually-labeled images. This would be a very time-consuming undertaking, which

urges us to arti�cially enlarge our dataset. Data augmentation summarizes such methods

that mainly consist of label-preserving transformations (Wong et al., 2016), e.g. �ipping,

rotating or adjusting pixel intensities of images. Shorten and Khoshgoftaar (2019) report

the e�ectiveness of data augmentation techniques in counteracting over�tting and thus

increasing the generalization performance of CNNs. Further, we bene�t from this group of

transformations because they can be applied to a batch of images parallel to the network still

training on a previous batch, thus reducing the overall latency of our pipelines. Finally, the

transformations are computed on demand and do not have to be stored on disk (Krizhevsky

et al., 2012).

Another bene�cial e�ect of data augmentation is that the object recognition of the CNN

will be more robust to changes that naturally occur. An object might be oriented di�erently

relative to the observer each time they see it. The lighting situation of the object might change

over time, e.g. many objects occur in day light and at night. Despite the variety of possibilities

objects are presented to us, the observer, we are able to recognize objects. This tolerance

of our visual system in detecting and recognizing objects makes the above mentioned data

augmentation techniques an intuitively plausible method to enrich image datasets for object
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recognition tasks. Here, we have used multiple augmentations which we will describe in detail

for the CNN-gray and CNN-di� in the following (Figure 2.5 B-C).

2.5.1 CNN-GRAY

The training pipeline for the CNN-gray network is nearly identical to Krizhevsky et al. (2012).

We are interested in the luminance information of the images. For that purpose, we convert

the colour images to grayscale by averaging the pixel intensities over the RGB channels. Both

datasets consist of images with varying aspect ratios and resolutions whereas the architecture

of both networks only allows for same shaped inputs. In order to solve this mismatch, we

resize the images so that the shorter side is 256�� long and extract the center square of size256 ◊ 256�� (= 6.4 ◊ 6.4���). That way, we can resize images without distorting the displayed

objects. Also, we assume the object of interest to be located near the center of the image,

therefore little information about the object is lost by performing a squared center crop. When

reading image �les, raw pixel values come in range from 0 to 2552 by default. A neural network,

that is trained on a large value range, is likely to learn high biases which might impair the

generalization performance of the network. In order to prevent the CNN from getting strongly

biased, in contrast to Krizhevsky et al. (2012), we perform a Min-Max normalization of the

pixel values to [0, 1] (Jayalakshmi & Santhakumaran, 2011).

Humans are able to recognize objects, even if only a subsection of the object is presented (e.g.

We can identify trees by only looking at their leaves). To simulate this behaviour, we extract a

random 224 ◊ 224�� (= 5.6 ◊ 5.6���) crop from the image. This allows us to convert the image

to the network’s expected input shape while simultaneously introducing more variation to

the training set. Also, this reduces the location bias in the network, i.e. the network does not

expect the objects to be located exactly at the center of the image (Shorten & Khoshgoftaar,

2019). Next, we �ip the image along its horizontal axis by a 50% chance. Finally, we adjust the

contrast of our images by subtracting the mean pixel intensity from an image, multiplying the

zero-mean image with a random factor 0.5 � � � 1.5 and adding the (previously subtracted)

2 Each pixel in each channel is encoded as 8-bit unsigned integer, which results in 256 di�erent values a pixel
can hold per channel
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mean again. Note, that, after adjusting the contrast, pixel values can exceed the range of [0, 1].
Especially, this is the case with images that provide high variance in pixel intensities.

At validation and test time, we check howwell the network has learned general class-speci�c

features from the train set. During validation and testing, we use a similar preprocessing

of the input images but without data augmentation. As Krizhevsky et al. (2012) has shown,

performing data augmentation during validation and testing can result in higher accuracy

scores. Here, we do not aim for the highest possible accuracy score but we rather want to

compare the performance of two CNNs. Hence, we discard data augmenting operations during

validation and testing. The training pipeline preprocesses images in a speci�c scheme at train

time. Therefore, the network expects images to arrive in that speci�c scheme at validation and

test time. Nevertheless, we replace data augmenting operations with deterministic operations.

Similar to the training pipeline, we thus replace the random 224◊224�� (= 5.6◊5.6���) crop by
a center crop of same size. Further, we did not perform any horizontal �ips and did not adjust

the image contrast. The remaining preprocessing operations are identical to the CNN-gray’s

training pipeline.

2.5.2 CNN-DIFF

To make the prediction performances of both CNNs as comparable as possible, we constructed

the training pipeline of the CNN-di� similar to the training pipeline of the CNN-gray.

We �rst convert the colour images to grayscale (luminance information). We resize the

image so that the shorter side is 320�� long and extract the center 320 ◊ 320�� (= 8.0 ◊ 8.0���)
patch. Next, we normalize the pixel values to [0, 1]. We create 300 ◊ 300�� (= 7.5 ◊ 7.5���)
di�erence images which only contain information about luminance edges of the original image

(see Section 2.2.2 for details). Since the underlying drift trajectory is random, the creation of

the di�erence images can be considered an additional data augmenting operation. The pixel

values of the di�erence image are the absolute di�erences of two slightly shifted versions of

the original image, and thus have a range between zero and one.
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We resize the di�erence image to 256 ◊ 256�� (= 6.4 ◊ 6.4���) to match the training pipeline

of the CNN-gray. From here on, both training pipelines are identical. We extract a random224 ◊ 224�� (= 5.6 ◊ 5.6���) crop of the di�erence image. Next, we �ip the image by a 50%
chance and adjust the contrast of the (zero-mean) di�erence image by a factor of 0.5 � � � 1.5
(see CNN-gray training pipeline for details).

At validation and test time, the CNN-di� expects di�erence images because it is trained on

di�erence images. For that reason we create a random 300 ◊ 300�� (= 7.5 ◊ 7.5���) di�erence
image of the squared and normalized 320 ◊ 320�� (= 8.0 ◊ 8.0���) grayscale image. We resize

the resulting di�erence image to 256 ◊ 256�� (= 6.4 ◊ 6.4���) to further match the validation

and test pipeline of the CNN-gray network. Finally, we extract the center 224 ◊ 224�� (=5.6 ◊ 5.6���) patch of the image.
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Figure 2.5: CNN Architecture and Training Pipelines. (A) The CNN architecture scheme is created with LeNail

(2019). Both networks (CNN-gray and CNN-di�) share the same architecture. The output of each convolutional

layer is batch-normalized. The output of the �rst, second and �fth convolutional layers is max-pooled, additionally.

(B - C) Training pipelines from raw RGB-valued images to �nal net inputs of CNN-gray (B) and CNN-di� (C).
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2.6 Experiment 1

In the �rst experiment, we test our hypothesis that the CNN-di� learns more robust features

from the train set compared to the CNN-gray. Hence, we expect the CNN-di� to generalize

better to previously unseen images. Whilewe use the validation set tomonitor the generalization

performance of our networks after each training epoch, we use the test set to evaluate the

generalization capability of both CNNs after training. The test set is larger than the validation

set which provides more reliable generalization scores. We trained both CNNs on the exact

same train set taken from ImageNet. We prepared the training datasets according to the

CNN-speci�c training pipelines. We prepared the test images according to the CNN-speci�c

validation and test pipelines. To determine if the CNN-di� generalizes better than the CNN-

gray, we compare top-1 accuracy and top-5 accuracy scores of both CNNs on the test set. High

top-5 accuracy scores would indicate that a CNN recognizes the superordinate category of

the objects (e.g. "that’s a dog") well. Whereas a CNN with high top-1 accuracy scores could

distinguish between true classes (e.g. "that’s a beagle").

2.7 Experiment 2

In the second experiment, we investigated whether training a CNN on images derived from

ocular drift (CNN-di�) improves its object recognition performance on sketch images. We

expect the CNN-di� to predict class labels of sketch images more accurately than the CNN-gray

because the CNN-di� is trained on di�erence images, in which edges are highlighted, and

sketches mainly contain information about the shape of objects rather than their achromatic

surface colour. To test this hypothesis, we reused the trained networks taken from experiment

1 and calculated top-1 accuracy and top-5 accuracy scores for both CNNs on the ImageNet-

Sketch dataset. We prepared the sketch images according to the CNN-speci�c validation and

test pipelines.
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3.1 Object Recognition Performance

Our results of both experiments and the validation curves of the loss and accuracies throughout

training are summarized in Figure 3.1. We have found that the object recognition performance

of the CNN-gray is better than the performance of the CNN-di� after training it on ImageNet

(top-1 accuracy: 54.0% vs. 37.8%; top-5 accuracy: 76.8% vs. 61.5%, see Figure 3.1C). This gap in
accuracies is relatively constant throughout training as the validation accuracy curves indicate

(see Figure 3.1B) and the inverse can be observed for the validation losses (see Figure 3.1A).

The CNN-gray achieves top-1 and top-5 accuracy scores on the ImageNet-Sketch dataset of13.8% and 26.9%. The CNN-di�’s accuracy scores on the sketch set are 10.3% and 21.9% (see

Figure 3.1C).

Further, we observe a large gap between the training and validation loss scores with both

CNNs (see Figure 3.1A). These gaps indicate that both CNNs began over�tting in early stages

of the learning process. Both, validation and test accuracy rates, measure how well a network

generalizes to previously unseen data. The test accuracy scores are more reliable because test

sets usually contain more samples than validation sets. Nevertheless, test accuracy rates on

our ImageNet test set of both CNNs surpass the corresponding validation accuracy rates by1 � 2%.
3.2 Smoothness of Validation Curves

After training both networks, it seemed to us that the validation accuracy curve of the

CNN-di� was smoother than the validation accuracy curve of the CNN-gray (see Figure

3.1B). Therefore, we wanted to test whether the validation accuracy curve of the CNN-di� is

statistically smoother than the validation accuracy curve of the CNN-gray. Since both curves

have a very similar overall shape, we de�ned the smoothness based on the absolute accuracy

di�erence between consecutive epochs of the normalized validation accuracy curves. The
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Figure 3.1: Training results. CNN-gray scores in red, CNN-di� in green. (A) Both networks started to over�t

from early epochs on. (B) Validation accuracies after 80 epochs (top to bottom): 0.746, 0.594, 0.506, 0.357. (C)
Accuracies on test data (left to right): 0.540, 0.768, 0.378, 0.615, 0.138, 0.269, 0.103, 0.219. Vertical dashed lines in

(A) and (B) mark epochs, from which on we reduced the learning rate.

smaller this absolute di�erence, the smoother the curve. To compute this smoothness, we �rst

added a leading zero to both validation accuracy curves (both validation accuracy curves start

with non-zero values because the �rst validation score was acquired after the �rst training

epoch). We than normalized each curve individually to a range of [0, 1]. We did so because

we are interested in the variance of both curves and the overall higher accuracy scores of the

CNN-gray would e�ect the step size between two epochs. Finally, we extracted the absolute

di�erences between two consecutive epochs.

Since the absolute di�erences of both curves are not normally distributed, we performed the

non-parametric Mann-Whitney U test to investigate whether the absolute di�erences of the

CNN-di� curve are statistically smaller than the di�erences of the CNN-gray curve (McKnight

& Najab, 2010). However, we have found no signi�cant di�erence in the smoothness of both

curves (� = 2805.0, � = .178).
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Fixational Eye Movements are well known for carrying the retinal image across photoreceptors

and thus maintaining vision by preventing photoreceptors to adapt to constant stimulation

(Martinez-Conde et al., 2004). Recent studies suggest that FEMs, in particular ocular drift,

serve the purpose to extract features, such as luminance edges, from the retinal image before

the signal reaches the cortex (Kuang et al., 2012; Rucci & Victor, 2015). Our visual system

is most sensitive to temporal modulations in the sensory input and therefore is in its core

spatiotemporal (Rucci & Victor, 2015). CNNs are often used to model the visual system (e.g.

Krizhevsky et al., 2012), although CNNs work with purely spatial images and neglect signal

changes over time. We wanted to test on natural images and sketches if the object recognition

performance of a CNN can be improved by including temporal information, that result from

ocular drift, in the training images.

We have come up with an approximation that represents temporal modulations of the

retinal image in a purely spatial format, which makes it possible for CNNs to train on. We

call this approximation di�erence image. To test if object recognition performance of a CNN

could be improved by considering the e�ect of ocular drift in the training images, we have

trained two identical CNNs on ImageNet and compared their generalization performance

on natural images and on sketches. We have trained the �rst CNN on standard grayscale

images (CNN-gray). We have trained the second CNN on di�erence images (CNN-di�). The

CNN-gray achieved higher accuracy scores than the CNN-di� on natural images of the test set.

The CNN-gray also achieved higher accuracy scores than the CNN-di� on sketches of objects.

4.1 Dri� Based Edge Extraction Does Not Facilitate Object

Recognition in CNNs

In our experiment 1, the CNN-gray, which we have trained on standard grayscale images,

performed better on our test set of natural images than the CNN-di�, which we have trained
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on di�erence images. These results do not support our assumption that including temporal

information, that result from ocular drift, in the training images facilitates object recognition

for natural images in CNNs. Our visual system is not sensitive to static input but only to

input that changes over time (Ditchburn & Ginsborg, 1952; Riggs & Ratli�, 1952; Yarbus, 1967).

Kuang et al. (2012) and Rucci and Victor (2015) suggest that temporal modulations caused

by FEMs, in particular ocular drift, are involved in extracting edges in the retina. We had

assumed that the CNN-di� would perform better than the CNN-gray because we have trained

the CNN-di� on di�erence images, which we have created to include temporal modulations

caused by ocular drift in the training images. Extracting edges while simultaneously reducing

redundant information in the retina (Kuang et al., 2012) might be a neccessary stage in order

to reduce the metabolic costs of processing visual information (Laughlin et al., 1998).

The CNN-di� has been trained on di�erence images that we have created to highlight

luminance edges and reduce information in homogeneous areas in grayscale images. Therefore,

we have trained the CNN-gray on images that contain more information than di�erence images.

Biological systems might depend on reducing the information from the sensory input to lower

the metabolic cost that comes with neural information processing (Laughlin et al., 1998). Since

CNNs do not depend on being energy-e�cient, CNNs might not bene�t from retina-like edge

extraction based on ocular drift like we would expect from biological systems. Instead, by

reducing information in the input images, the input images could be reformatted to lower

dimensional inputs. To learn the structure of lower dimensional data, a smaller network

might be su�cient. The size of an arti�cial neural network still is decisive if the network is

deployable in systems with limited resources, such as embedded systems (Roth et al., 2020).

In the process of creating a di�erence image, we perform two crops of an original image.

The original image is of size 320 ◊ 320�� , the crops and thereby the di�erence image are of

size 300 ◊ 300�� . This means, that roughly 12% of the image is discarded to create a di�erence

image. The percentage is slightly o� because it depends on the random o�set between both

crops. This only applies to the CNN-di�. The CNN-gray does not depend on di�erence images.

Creating a di�erence image is performing a trade-o� between losing spatial information

(�12%) in favour of the gained temporal information. Retrospectively, we could have chosen a
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smaller bu�er for cropping because the o�set hardly hit 3�� in one direction. If we decided to

crop 314 ◊ 314�� (bu�er of 3�� in each direction) instead, we would have lost less than 4% of

available spatial information while not losing any temporal information.

We have approximated the e�ect of ocular drift on sensory input as di�erence image. This

approximation is greatly simpli�ed because we have neglected precise response behaviour of

retinal ganglion cells. Casile et al. (2019) have proposed a more sophisticated and biologically

plausible model of spatial and temporal response behaviour of retinal ganglion cells. Using such

a model to simulate how edge extraction is initiated by ocular drift in the retina might result

in more comparable accuracy scores between a CNN, that is trained on standard grayscale

images, and a CNN, that is trained on images derived from ocular drift.

We have chosen a CNN architecture that only processes single images. A more plausible

approach would have been to use a network architecture that classi�es sequences of images,

i.e. videos, because drift adds a temporal dimension to even completely still images (Kuang

et al., 2012). A possible architecture is described by Joe Yue-Hei Ng et al. (2015). Input data

consists of an ordered sequence of images. The network might bene�t from the additional

temporal variability when applying drift to an image, in comparison to static grayscale images

which are time-invariant.

The datasets contain images of varying resolutions. The architecture of both networks,

CNN-gray and CNN-di�, only allow images of one resolution, 224 ◊ 224�� . When resizing

images to this speci�c resolution we change the original data. This is of particular interest

when we are resizing to a larger image size because the additional space (pixels) needs to be

�lled depending on the original image. This often happens by interpolation with a gaussian

kernel, which smooths edges and creates a blurrier image. When we create a di�erence image

from a blurry image, the highlighted luminance edges appear weaker because the luminance

di�erences between nearby pixels are smaller than with non-blurry images.

We posthoc assumed, that the validation accuracy curve of the CNN-di� was signi�cantly

smoother than the validation accuracy curve of the CNN-gray. We disproved our assumption

by a Mann-Whitney U-Test. A smoother validation curve could have indicated that the CNN-

di� had learned more durable features from the training data, that the network did not "forget"
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4 Discussion

during training. Following this interpretation of the validation curve landscape, a smooth

validation accuracy curve indicates that a network builds upon the already learned features

because discarding already learned and learning new features would most possibly result in

varying accuracy rates.

4.2 Dri� Based Edge Extraction Does Not Facilitate Object

Recognition for Sketches in CNNs

In our Experiment 2, we have compared the object recognition performance on sketches of

the CNN-gray and CNN-di�. The CNN-gray, which we have trained on standard grayscale

images, performed better in classifying sketches of objects than the CNN-di�, which we have

trained on di�erence images. These results do not support our assumption that including

temporal modulations, that result from ocular drift, in the training images would facilitate

object recognition for sketches of objects in CNNs. Singer et al. (2020) reported that CNNs,

which are trained on natural images, perform poorly in recognizing objects in more abstract

data, such as sketches. We have assumed, that the CNN-di� would perform better than the

CNN-gray because we have trained the CNN-di� on di�erence images which, similar to

sketches, accentuate edges over surfaces and textures.

Geirhos et al. (2019) have reported that ImageNet-trained CNNs, such as the CNN-gray,

make classi�cation decisions based on an object’s texture rather than its shape. By training

a CNN on images that display objects with class-speci�c shapes and con�icting textures

within the classes, the CNN can be forced to learn object representations based on their shape

rather than their texture, which increases both, the CNN’s accuracy and robustness against

perturbation. Singer et al. (2020) have reported that �ne-tuning ImageNet-trained CNNs on

ImageNet-Sketch improves object recognition performance on sketches and line-drawings

of objects. Fine-Tuning refers to the procedure that some layers of a pretrained (e.g. trained

on ImageNet) network get trained on another dataset (e.g. ImageNet-Sketch) to learn more

versatile features. Note, that, for testing, Singer et al. (2020) have used sketches that are not

contained in ImageNet-Sketch.
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4.3 Conclusion

To test the object recognition performance of both CNNs ( CNN-gray and CNN-di�) on

sketches of objects, we have calculated accuracy scores of both CNNs on the ImageNet-Sketch

dataset. Geirhos et al. (2019) have reported that ImageNet-trained CNNs, such as the CNN-

gray, focus on texture information to distinguish between objects. Additionally, We have

trained the CNN-di� on di�erence images that highlight edges similar to sketches. Sketches

mainly contain information about the shape of objects and neglect their texture, thus, we have

expected the CNN-di� to perform better on sketches than the CNN-gray. We couldn’t support

this assumption. The ImageNet-Sketch might not have been the ideal benchmark dataset

because images contained in ImageNet-Sketch show di�erent levels of details. As can be seen

in Figure 2.4, image styles vary from cartoon-like to elaborate drawings with shadows and

texture. We might have received more expressive results if we had used a smaller selection of

"clean" sketches like Singer et al. (2020) have done.

To further investigate the idea that CNNs could bene�t from retina-like edge extraction

based on �xational eye movements, one could �ne-tune a ImageNet-trained CNN on di�erence

images and compare object recognition performance of the �ne-tuned CNN and the ImageNet-

trained CNN on sketches similar to Singer et al. (2020). It might also be possible to substitute

di�erence images with a biologically more plausible model such as Casile et al. (2019).

4.3 Conclusion

Spatiotemporal processing of visual sensory input is essential for us to perceive our surrounds.

Nevertheless, our results suggest that temporal processing only plays aminor role for CNNs and

does not facilitate object recognition in CNNs. Spatiotemporal processing might be neccessary

for biological systems because, at the cost of losing information, it might be metabolically more

e�cient. There are many points for improvement. Further research is needed to investigate

the relevance of FEMs and spatiotemporal processing for object recognition in CNNs.
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