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Abstract

This thesis examines how perceived magnitude and discriminability relate in the con-
text of White’s Illusion, using the framework proposed by Zhou, Duong, and Simoncelli
(2024). White’s illusion is a brightness illusion in which traget patches with same lumi-
nance, embedded in alternating black and white gratings, appear different depending on
their spatial context. According to Zhou et al. (2024), both intensity judgments and sen-
sitivity arise from a shared internal representation, linking the mean response to stimulus
strength with its variability via Fisher Information. To test this, participants took part
in magnitude estimation task- they viewed luminance-defined target patches embedded
in black or white gratings and rated their brightness. From these ratings, mean responses
and standard deviations were extracted. Sensitivity was derived by dividing the deriva-
tive of the mean response by the standard deviation. Integrating sensitivity yielded
intensity functions, which were fitted to perceptual scales from a prior MLCM study on
the same illusion. Each context was assigned its own integration constant, and a shared
scale factor aligned units. Most fits showed strong alignment (average RMSE 6.9%).
While the mean responses followed the expected power-law form, standard deviations-
interpreted as internal noise, systematically deviated from the framework’s multiplicative
noise assumption. LOWESS smoothing revealed inverted U-shapes in many noise pro-
files, suggesting non-monotonic effects potentially linked to anchoring. These deviations
challenge the framework’s assumption of proportional noise and highlight complications
when applying it to context-dependent illusions. Still, the consistent match between
ME-derived and MLCM scales suggests the model robustly captures core aspects of con-
textual modulation. Future work should minimize task-related biases and collect ME
and MLCM data within the same observers to clarify the sources of deviation.



Zusammenfassung

Diese Arbeit untersucht, wie wahrgenommene Helligkeit und Diskriminierbarkeit im
Kontext der White’schen Illusion zusammenhängen, unter Verwendung des von Zhou
et al. (2024) vorgeschlagenen theoretischen Rahmens. Die White’sche Illusion ist eine
Helligkeitsillusion, bei der Zielbereiche mit identischer Luminanz, eingebettet in abwech-
selnd schwarze und weiße Gitter, je nach räumlichem Kontext unterschiedlich hell er-
scheinen. Laut Zhou et al. (2024) gehen sowohl Intensitätseinschätzungen als auch Sensi-
tivität aus einer gemeinsamen internen Repräsentation hervor, die die mittlere Reaktion
auf die Reizstärke mit ihrer Variabilität über die Fisher-Information verknüpft.
Zur Überprüfung dieser Annahme führten Teilnehmende eine Magnitudenschätza-

ufgabe (ME) durch: Sie betrachteten luminanzdefinierte Zielbereiche, eingebettet in
schwarze oder weiße Gitter, und bewerteten deren Helligkeit. Aus diesen Bewertun-
gen wurden Mittelwerte und Standardabweichungen extrahiert. Die Sensitivität wurde
berechnet, indem die Ableitung der mittleren Reaktion durch die Standardabweichung
geteilt wurde. Durch Integration der Sensitivität wurden Intensitätsfunktionen erhal-
ten, die an perzeptuelle Skalen aus einer früheren MLCM-Studie zur gleichen Illusion
angepasst wurden. Jedem Kontext wurde eine eigene Integrationskonstante zugewiesen,
und ein gemeinsamer Skalierungsfaktor sorgte für die Angleichung der Einheiten. Die
meisten Anpassungen zeigten eine hohe Übereinstimmung (durchschnittlicher RMSE
6,9%).

Während die Mittelwerte der Bewertungen der erwarteten Potenzfunktion folgten,
wichen die Standardabweichungen- interpretiert als internes Rauschen- systematisch
von der Annahme des Modells ab, dass das Rauschen proportional sei (multiplika-
tives Rauschen). Eine LOWESS-Glättung offenbarte in vielen Rauschprofilen umgekehrt
U-förmige Verläufe, was auf nicht-monotone Effekte hindeutet, die möglicherweise mit
Ankermechanismen zusammenhängen. Diese Abweichungen stellen die Annahme pro-
portionalen Rauschens in Frage und verdeutlichen die Herausforderungen bei der An-
wendung des Modells auf kontextabhängige Illusionen. Dennoch deutet die konsistente
Übereinstimmung zwischen den aus Magnitudenschätzungen abgeleiteten Skalen und
den MLCM-Skalen darauf hin, dass das Modell zentrale Aspekte kontextueller Modu-
lation robust abbildet. Zukünftige Arbeiten sollten aufgabenspezifische Verzerrungen
minimieren und ME- sowie MLCM-Daten innerhalb derselben Stichprobe erheben, um
die Ursachen der Abweichungen besser zu klären.
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1 Introduction

For centuries, people have been fascinated by how we perceive the world around us-
how patterns of light, sound, and touch translate into coherent experiences. This long-
standing curiosity led to the emergence of psychophysics, a scientific discipline devoted
to uncovering the relationship between physical stimuli and perceptual experience. As
the name suggests, ”psycho” refers to mind, while ”physics” refers to the measurable
properties of the external world- capturing the core aim of the field: to quantify how
objective input is transformed into subjective sensation. This endeavor faces a funda-
mental challenge: perceptual experiences are inherently private, accessible only through
introspection and verbal report. Psychophysics addressed this by developing experimen-
tal methods that infer internal experience from behavioral responses, offering a way to
systematically measure perception.

Through carefully designed experiments, psychophysics introduced methods to quan-
tify subjective sensations in response to objective changes in stimuli, laying the ground-
work for much of modern perceptual science. In the domain of visual perception, two
central dimensions have shaped this line of inquiry- sensitivity and perceived magni-
tude. While traditionally examined through separate theoretical lenses, they capture
complementary aspects of how sensory information is encoded and experienced.

1.1 Sensitivity and Weber’s law

Imagine the following scenario: you sit in a completely dark room. Someone lights a
single candle, and the change is immediate, the flame cuts through the darkness, and the
space is filled with light. Mere single flame made a dramatic difference in comparison to
the former pitch black room, it is much easier to see your surroundings. A second candle
is added to the room, and again, the difference is noticeable. The more lit candles are
added- the room grows steadily brighter, but each new flame seems to matter a little
less. By the time fifty candles are burning, lighting one more barely changes the room’s
appearance.

This intuitive experience is a perfect demonstration of the concept of sensitivity, which
is the ability to detect small differences between stimulus intensities. It is commonly
measured using the just-noticeable difference (JND), the smallest change in a stimulus
that leads to a perceptible difference. The JND increases with stimulus intensity, mean-
ing it is harder to notice a difference in a stronger stimulus- a relationship known as
Weber’s law (Sowden, 2012). In the candle example, the brighter the room becomes, the
greater the increase in light needed to produce a noticeable change. Weber’s law formal-
izes this observation, stating that the ratio between the JND and the overall stimulus
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1 Introduction

magnitude remains roughly constant, as shown in Equation 1.1:

∆I = k · I (1.1)

JND (∆I) between two stimulus intensities is proportional to the baseline intensity
(I), where k is a constant. This implies that as stimulus intensity increases, a larger
difference is needed for a change to be perceptible.

This proportional relationship has been validated across a wide range of sensory modal-
ities, including vision, audition, and touch. Sensitivity is highest at low stimulus levels
and diminishes as physical intensity increases, making it harder to distinguish changes
at higher magnitudes.

Weber’s law expresses a constant ratio between the JND and stimulus intensity. If
sensitivity is interpreted as the inverse of the JND, then it can be concluded that:

D(I) =
1

∆I
∝ 1

I
(1.2)

This means, sensitivity (D(I)) decreases as intensity increases, following an inverse
proportional trend. Figure 1.1 illustrates this relationship: sensitivity is highest at low
intensities and declines as intensity increases. This inverse trend implies that equal
physical increments produce diminishing perceptual effects.

Figure 1.1: Illustration of Weber’s law. The plot depicts the inverse relationship between sensi-
tivity (y-axis), and normalized stimulus intensity (x-axis). As stimulus intensity increases,
sensitivity decreases, indicating that larger changes in intensity are required to notice a
difference. This reflects Weber’s principle that the just-noticeable difference (JND) is pro-
portional to the baseline intensity, leading to diminishing perceptual sensitivity at higher
stimulus levels.

2



1.2 Perceived intensity and Stevens’ law

Figure 1.2: Illustration of Fechner’s law. The plot shows the logarithmic relationship between
perceived intensity (y-axis) and normalized stimulus intensity (x-axis), as proposed by
Fechner. As stimulus intensity increases, the rate of change in perceived intensity dimin-
ishes, resulting in a concave upward curve. This reflects the principle that equal increments
in physical intensity produce progressively smaller perceptual effects.

1.2 Perceived intensity and Stevens’ law

Returning to the candlelit room: the first few candles dramatically transform the space,
while later additions make increasingly smaller perceptual differences. Eventually, the
light seems to plateau, even though more candles continue to be added. This shift not
only illustrates a decline in sensitivity but also raises the question of how brightness
is perceived as intensity accumulates. While physical intensity of a stimulus can be
measured directly, perceived magnitude refers to how strong a stimulus feels- a subjective
judgment that does not always align linearly with the physical stimulus.

Fechner’s law (Fechner, 1860) was the first attempt to formalize this relationship.
Building on Weber’s law, it proposed that perceived intensity increases logarithmically
with physical stimulus strength. That is, each just-noticeable difference adds an equal
step to perceived magnitude, leading to a cumulative internal scale, as seen in Figure 1.2.
This approach offered a foundational link between sensory thresholds and perception.
However, it assumed a fixed logarithmic form across all modalities.

Stevens’ law (Stevens, 1957) later refined this view. Stevens proposed that the rela-
tionship between physical and perceived intensity follows a power law:

s = k · Iα (1.3)

where α is a modality-specific exponent, and k is a constant. The value of α determines
the shape of the perceptual response: compressive (α < 1), linear (α = 1), or expansive
(α > 1).

3



1 Introduction

Figure 1.3: Illustration of Stevens’ power law. The plot shows perceived magnitude (µ(s)) as a
function of stimulus intensity (s), for different exponent values (α). Each curve represents
a power-law relationship: α = 0.3 (compressive, yellow), α = 1.0 (linear, orange), and
α = 2.0 (expansive, red). The x-axis represents physical stimulus intensity, while the y-axis
reflects perceived magnitude. Lower exponents yield diminished perceptual growth, while
higher exponents exaggerate it, capturing modality-specific variations in sensory scaling.

1.3 Unified framework

At first glance, Weber’s and Stevens’ laws appear to address complementary aspects
of perception: Weber’s law describes how small a stimulus change must be in order to
be noticeable, while Stevens’ law quantifies how strong a stimulus is subjectively per-
ceived. Despite their shared goal of modeling perceptual experience, the two laws have
historically been treated as separate, leading to several theoretical and empirical issues
(Krueger, 1989). First, maintaining two independent models suggests that the human
brain uses distinct mechanisms to encode sensitivity and perceived magnitude- despite
both being derived from the same sensory input. This complicates efforts to develop
unified, efficient models of perception. Second, the two laws impose an empirical con-
flict between the logarithmic scaling implied by Weber’s law and the power-law scaling
observed by Stevens (1957). Treating them as unrelated prevents a coherent expla-
nation of how perceived intensity and sensitivity interact or co-vary across conditions.
Finally, maintaining this separation limits the ability to connect the psychophysical
with the physiological. Without a unified framework, the link between neural encoding
and behavioral responses remains unclear, reducing our ability to describe and develop
generalizable models of perception.

A recent paper by Zhou et al. (2024) proposes a mathematical framework that resolves
this longstanding divide by anchoring both Stevens’ and Weber’s laws to shared proper-
ties of internal sensory representations. The framework posits that sensory stimuli are
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1.3 Unified framework

transformed into an internal representation- the brain’s internal encoding of stimulus
intensity, which combines neural response strength (mean response, denoted as µ(s))
and variability of that neural response which is interpreted as noise (denoted as σ(s)).
The mean response is modeled as:

µ(s) = k · sα (1.4)

where s is the stimulus intensity, k is a scaling constant, and α determines the nonlin-
earity of the response. Noise (σ(s)), representing the deviation in the internal represen-
tation, is assumed to scale proportionally with the mean response itself:

σ(s) = c · µ(s) + b (1.5)

where c serves as proportionality constant and b is the intercept. This formulation
captures different models of internal noise depending on the values of c and b. Additive
noise corresponds to the case c = 0 and b ̸= 0, resulting in constant noise independent of
stimulus intensity. Multiplicative noise arises when c ̸= 0 and b = 0, where σ(s) scales
proportionally with the mean response. This model supports both Weber’s and Stevens’
laws for any exponent α according do the framework proposed by Zhou et al. (2024).
When both c and b have nonzero values, the resulting mixed noise model includes both
stimulus-dependent and independent components. The framework uses Fisher Informa-
tion (FI) to quantify the precision of internal representations in noisy systems. While
FI provides a general and powerful description, it is computationally intractable. To
address this, the framework employs Fisher sensitivity- a simpler approximation that
serves as a lower bound on FI, and is defined as:

D(s) =
µ′(s)

σ(s)
(1.6)

where µ′(s) is the derivative of the mean response with respect to stimulus intensity,
and σ(s) is the internal noise.

This unification explains Weber’s law under various noise configurations, with pro-
portional noise allowing both Weber’s and Stevens’ laws to coexist. As illustrated in
Figure 1.4, the left and middle panels demonstrate how Weber’s law is compatible with
Stevens’ law for any exponent, as long as internal noise scales proportionally with the
mean response. The right panel extends this idea by assuming that perceptual distances
between clearly visible (suprathreshold) stimuli correspond to integrated sensitivity. Un-
der this assumption, these distances follow a logarithmic mapping, reconciling all three
laws within a unified framework.

While Zhou et al. (2024) framework demonstrates strong potential for unifying clas-
sical laws across sensory modalities, its application to context-dependent phenomena

5



1 Introduction

Figure 1.4: Unified framework linking Weber, Stevens’, and Fechner. This figure illustrates
how Zhou et al. (2024) model reconciles three classical psychophysical laws. The left and
middle panels demonstrate that Weber’s law and Stevens’ law are compatible when internal
noise scales proportionally with the mean response. The right panel shows that, assuming
above threshold (suprathreshold) perceptual distances align with integrated sensitivity, the
framework predicts a logarithmic internal mapping, consistent with Fechner’s law.

like visual illusions remains untested. Visual illusions pose a unique challenge to the
framework’s core assumption- that perceived magnitude and sensitivity derive from a
fixed internal representation of the stimulus. In illusions, the appearance of a stimulus
is systematically altered by its spatial context, potentially challenging the assumption
of direct stimulus-response mapping. Context effects like contrast (where the stimu-
lus appear less like its surround) and assimilation (where stimulus appear more like its
surround) demonstrate that intensity perception depends not only on absolute stimulus
properties but also on relative spatial structure. If the framework can account for such
phenomena, it would mark a significant step toward a general model of perception that
accommodates both basic scaling laws and more complex contextual modulations.

1.4 Research question

The framework proposed by Zhou et al. (2024) offers a unified explanation for perceived
magnitude and sensitivity by linking both to shared properties of internal sensory rep-
resentations. It addresses the long-standing separation between two central aspects of
perception- sensitivity and perceived intensity. The framework is supported by exper-
imental findings across multiple sensory domains and grounded in a mathematically
consistent structure. Yet, its validity under context-dependent phenomena like visual
illusions remains untested. Context effects, such as contrast or assimilation, system-
atically alter perception without changes in the physical stimulus itself. These effects
present a challenge to models based on direct mappings between stimulus intensity and
internal representation.

Assimilation effects provide a meaningful extension in this direction. In assimilation,
the appearance of a target is influenced by its surround, becoming more similar to

6



1.4 Research question

Figure 1.5: Contextual modulation demonstrated in White’s illusion. Two identical gray
rectangles are placed over alternating black and white grating. Despite their physical
equivalence, the one embedded in black appears brighter than the one embedded in white.
This classic illusion exemplifies an assimilation effect, where the target adopts the visual
characteristics of its surrounding context.

it. White’s Illusion (White, 1979) exemplifies this: two identical patches, placed over
alternating black and white grating, appear different in brightness (see Figure 1.5).
The patch on the black stripe appears lighter, and the one on the white stripe darker,
despite being physically identical. This illusion demonstrates how perceived intensity
can be modulated by spatial context, challenging models that assume a direct mapping
from physical to perceptual magnitude.

White’s Illusion is especially suited for testing the framework proposed by Zhou et
al. (2024), not only because of its strong contextual modulation, but also because per-
ceptual intensity data for this illusion have already been collected. These data were
obtained through a Maximum Likelihood Conjoint Measurement (MLCM) experiment
conducted by (Vincent, Maertens, & Aguilar, 2024) at the Computational Psychology
Department of TU Berlin. MLCM provides perceptual scales based on comparative
judgments, offering an independent and methodologically distinct estimate of perceived
intensity. Since Zhou et al. (2024)’s framework yields intensity functions by integrating
sensitivity derived from magnitude estimation, the availability of MLCM data creates
a unique opportunity: it allows a direct comparison between the analytically derived
intensity functions and independently measured perceptual scales. This makes it pos-
sible to assess whether the framework can recover established perceptual patterns in a
context-dependent illusion like White’s.

This leads to the research question of this thesis: How do perceived magnitude
and integrated sensitivity relate to each other in White’s Illusion, within the
framework proposed by Zhou et al. (2024)?

7



1 Introduction

1.5 Magnitude estimation and MLCM

Magnitude estimation (ME) is a psychophysical method for quantifying perceived inten-
sity. Observers assign numerical values to stimuli based on how strong or intense they
perceive them (Kingdom & Prins, 2016).
ME offers several advantages. First, it is highly sensitive to fine perceptual differences,

allowing participants to report subtle variations in perceived intensity using continuous
numerical values (Stevens, 1957). Second, it is straightforward to implement, requiring
minimal instruction and no complex stimulus pairings, which makes it efficient for both
researchers and participants (Gescheider, 1997). Third, it provides direct access to
perceived magnitude on an interval scale, enabling immediate modeling of perceptual
responses (Stevens & Galanter, 1957).
However, ME also has notable drawbacks. Small shifts in stimulus range can lead

to range effects, a bias where participants’ responses are influenced by the range of
stimuli presented, rather than by their absolute properties. Another problematic aspect
is anchoring effects (Garcia-Marques & Fernandes, 2023), where participants’ estimates
are influenced by initial or previously seen values, even when those values are irrelevant
to the current judgment. Additionally, participants often interpret the numerical scale
differently, leading to inconsistencies (Mertens, Mertens, & Lerche, 2021). These issues
make ME less reliable for between-subject comparisons or for capturing stable perceptual
metrics.
To address these limitations, alternative methods such as partition scaling and max-

imum likelihood conjoint measurement (MLCM) have been developed. MLCM, in par-
ticular, is a comparative judgment method in which participants evaluate which of two
stimuli appears more intense, across a systematically varied stimulus grid. By modeling
the frequency of chosen comparisons under varying conditions, MLCM estimates under-
lying perceptual scales for each stimulus dimension (Knoblauch, Maloney, Knoblauch,
& Maloney, 2012). Unlike ME, MLCM yields relative rather than absolute scale values,
but with higher internal consistency and resistance to contextual biases.

8



2 Methods

2.1 Participants

To investigate the relationship between perceived brightness and integrated sensitivity
within the context of White’s Illusion, a magnitude estimation experiment was conducted
with nine participants. Eight participants were näıve observers, while one participant
(’OTC99’) was the author of this thesis- who also designed the experiment and was
highly familiar with its theoretical background and objectives. All participants took
part exclusively in this experiment. No data were reused from previous studies.

2.2 Stimulus

The stimuli consisted of gray target patches embedded in a high-contrast square-wave
grating, as can be seen in Figure 2.1. The grating spanned 16° × 12° (width × height)
at 0.5 cycles per degree, resulting in 8 full cycles (16 bars). Luminance ranged from 5.25
cd/m² (black bars) to 525 cd/m² (white bars), overlaid on a uniform gray background
of 95 cd/m². Two target patches, each 4° high, were vertically centered within the grat-
ing. Eighteen target luminance levels were used, evenly distributed across the display’s
available luminance range.

2.3 Experiment Design

The experiment was conducted in a darkened room using a JVCmonitor (376mm× 301mm,
1024 × 768 px), operating at 60Hz with 16-bit grayscale resolution (65536 levels).
The monitor received an analog signal and supported a measured luminance range
of 0.76 to 550 cd/m2. Participants were seated 76 cm from the screen, resulting in
approximately 34 pixels per visual degree. A chinrest was used to ensure a stable
viewing position. Stimulus presentation was controlled using the Python library HRL
(https://github.com/computational-psychology/hrl), and responses were recorded
using a keypad.
Each trial presented a single target target patch embedded in a high-contrast square-

wave grating (16◦ × 12◦, 0.5 cycles/deg, 8 cycles total). The grating consisted of al-
ternating black and white bars on a uniform gray background. Two vertically centered
target patches (each 4◦ high) were placed either on a black or white stripe. Eighteen
luminance levels were sampled across the display’s usable range.
Participants completed five blocks of 36 trials (18 per context), totaling 180 trials.

Trial order was randomized. Brightness ratings were entered using a keypad, on a scale

9
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2 Methods

Figure 2.1: Stimuli used in the magnitude estimation experiment. Each stimulus consisted
of a gray target patch embedded in a square-wave grating of black and white bars. The
target’s luminance varied across trials, and its position alternated between black and white
phases of the grating. This design enables measurement of context-dependent changes in
perceived brightness, following the structure of White’s Illusion.

from 0 (black) to 100 (white). Breaks were provided every 18 trials.

2.4 Experiment procedure

The experiment consisted of five blocks, each containing 36 trials: 18 with the target on
a white bar and 18 on a black bar. All blocks were completed within a single session.
Trial order was randomized. Each participant completed 180 trials in total. In every
trial, participants assigned a brightness value to the target patch using a scale from 0
(completely black) to 100 (completely white). Break screens appeared automatically
after every 18 trials, and participants were free to take additional breaks as needed.

2.5 Data analysis

The analysis focused on the analytical approach suggested in the framework by Zhou et
al. (2024). First, the analysis examined how different levels of luminance were perceived
across the two contextual conditions. For each luminance level, perceived brightness
ratings were averaged to estimate the mean perceptual response. To characterize the re-
lationship between physical stimulus intensity and perceived brightness, a power function
following Equation 1.4 was fitted to the data using nonlinear regression, implemented
through Python’s scipy.curve fit method.

10



2.5 Data analysis

Next, response variability- interpreted as internal noise according to the framework,
was measured at each luminance level by calculating the standard deviation of brightness
estimates. As with the mean response, Python’s scipy.curve fit method was used to
find the best-fitting function of the form in Equation 1.5.
To ensure that the fitted functions for both mean response and standard deviation

accurately captured the data, residual analyses were performed. For each fit, the root
mean squared error (RMSE) and bias were computed. RMSE quantifies the average
magnitude of residuals- the differences between predicted and observed values-and re-
flects overall fit quality. It is defined as:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (2.1)

where yi is the observed value, ŷi is the predicted value, and N is the number of data
points. Lower RMSE values indicate closer alignment between model and data.
Bias, in contrast, captures the average signed error across all points and reveals sys-

tematic over- or underestimation. It is computed as:

Bias =
1

N

N∑
i=1

(yi − ŷi) (2.2)

A bias close to zero suggests that residuals are symmetrically distributed around the
true values, supporting the adequacy of the functional form used.
Using the estimated mean response and noise functions, a sensitivity function was

derived to quantify how distinguishable closely spaced luminance levels are. Theoreti-
cally, this reflects the precision of the internal sensory representation and is linked to the
concept of Fisher Information. Since the mean response is modeled as a power function
as seen in Equation 1.4, its derivative is expressed analytically as:

µ′(s) = α · k · sα−1 (2.3)

Taken together the definition of Fisher sensitivity (1.6) and the Equations 1.4 and 1.5:

D(s) =
µ′(s)

σ(s)
=

αksα−1

cksα + b
(2.4)

Then, taking Equation 2.4 and integrating it yields the intensity function:

I(s) =

∫
αksα−1

cksα + b
dx =

log(α(cksα + b))

c
+ C (2.5)

11



2 Methods

where C is an unknown constant. Equation 2.5 can be rewritten into a more compact
and readable form:

I(s) =
1

c
log(α(cksα + b)) + C (2.6)

In practice, it is impossible to compute the value of the constant C. Since indefinite
integration always introduces an additive constant, its value cannot be recovered from
the derivative alone- all functions that differ only by a constant have the same derivative.
Thus, the integration step inherently yields an undetermined constant C. This makes the
comparison between the data obtained through MLCM and the analitically computed
intensity functions non-trivial, as C determines the vertical shift in the resulting intensity
functions. Without knowing C, the computed functions lack an important aspect of their
absolute relationship, preventing direct comparison beyond their relative shapes.
To address this, the ME-derived intensity functions were fitted to the perceptual scales

obtained through MLCM. Each context (target on black or white grating) was assigned
an independent integration constant, Cw (for white) and Cb (for black), and both func-
tions were jointly scaled by a common factor g. This common scaling factor preserves
the internal unit of perceptual magnitude across contexts, reflecting the assumption of
a shared internal axis. The parameters α, c, k, and b were fixed to the values obtained
previously. Thus, the fitting was performed across three degrees of freedom: Cw, Cb,
and g.

The integrated sensitivity functions were defined separately for each context. These
represent the result of analytically integrating the Fisher sensitivity function:

Iw(s) =
1

c
log (α(cksα + b)) + Cw

Ib(s) =
1

c
log (α(cksα + b)) + Cb

(2.7)

Here, Iw(s) and Ib(s) are the context-specific intensity functions derived from the
sensitivity function. The constants Cw and Cb account for the ambiguity introduced by
indefinite integration.
To enable comparison with perceptual scales from MLCM, these functions were jointly

scaled by a global factor g:

Îw(s) = g · Iw(s), Îb(s) = g · Ib(s) (2.8)

The scaling preserves the shape of the functions while aligning them to the units of
the perceptual scales. Only the constants Cw, Cb, and g were fitted, while the rest of
the parameters were fixed from the earlier model fits.
The intensity functions of each participant from the ME experiment was then fitted

independently to each participant from the MLCM dataset, computing the root mean
squared error (RMSE) of the fit in each case. The RMSE provides a quantitative measure
of the goodness of fit between the analytical prediction and the observed perceptual
scales. This procedure resulted in a total of 72 comparisons across all participant pairs.

12



3 Results

3.1 Mean response

The first step in applying the framework suggested by Zhou et al. (2024) is computing
the mean response functions of each participant per luminance level, for each context.
Figure 3.1 shows the mean response functions obtained from all nine participants through
the ME experiment. The x-axis depicts normalized luminance levels, while the y-axis
represents the mean response for each luminance. In each panel, the black markers
depict data for targets embedded in the black grating, whereas the light gray markers
depict data for targets embedded in the white grating.

The plots show that for each participant, the mean response functions obtained under
the two context conditions are relatively similar in shape and progression. This pattern
holds across participants, resulting in a high degree of consistency in the overall struc-
ture of the functions. In other words, not only are the black and white context curves
similar within each participant, but the response profiles also closely resemble one an-
other across the entire participant group. These trends are reflected in the estimated α
and k parameters, summarized in Table 3.1.

Table 3.1: Estimated power-law parameters α and k for all participants. The table lists the
fitted parameters for each participant’s perceived magnitude function, for the white and
black context conditions. The exponent α determines the nonlinearity of the perceptual
response, while the scaling factor k adjusts overall magnitude. Most participants exhibit
higher α values in the white context, indicating more expansive scaling relative to the black
context.

Participant α k
in white in black in white in black

OTC99 0.616 0.480 107.405 99.425
MA97 0.675 0.458 104.980 100.419
JH02 0.810 0.561 105.320 95.164
ND99 0.472 0.543 90.650 96.389
LK99 0.439 0.367 101.238 94.256
ST05 0.421 0.285 93.467 85.551
JF00 0.372 0.298 105.652 103.206
GC99 0.474 0.263 104.371 98.258
JS00 0.810 0.561 105.320 95.164

Table 3.1 presents the estimated parameters for the mean response function fits.
Across participants, the values of α (the exponent that determines the nonlinearity of
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Figure 3.1: Perceived brightness as a function of luminance. For each participant, mean re-
sponses (y-axis) are plotted against stimulus luminance (x-axis) for both context conditions.
The black curve corresponds to targets embedded in a black grating, and the gray curve
to targets on white. Across all participants, the assimilation pattern is evident- the target
embedded in black grating was perceived systematically brighter than the target embedded
in white grating. This effect wasn’t constant across the entire luminance range- all par-
ticipants experienced reversal of the assimilation effect. On average, at higher luminances
the target embedded in white grating was perceived as brighter than the one embedded in
black.
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3.2 Standard deviation

the mean response function) and k (the scaling factor) are relatively consistent between
the two context conditions, supporting the observation of structural similarity in the re-
sponse functions. Most participants show slightly higher α values in the white context,
indicating a more expansive scaling in that condition, but the overall differences remain
moderate.

Residual analyses for the standard deviation fits are reported Figure 5.1, and their
RMSE and bias values in Table 5.1. RMSE values varied between participants, with
some showing higher deviation in the black context (e.g., JF00, ST05), while others
showed larger errors in the white context (e.g., JH02, GC99). Bias values were gen-
erally small, ranging between −0.23 and 0.27, indicating no strong systematic over- or
underestimation.

The mean response plots reveal a notable pattern: consistent with White’s Illusion as
an assimilation effect, targets embedded in the black grating are initially perceived as
brighter than those in the white grating. However, this relationship reverses at higher
luminance levels, with the white-context targets eventually appearing brighter. Most
participants exhibit this perceptual shift around luminance values of 0.6 to 0.8, though
some, such as LK99 and LS00, experience the reversal considerably earlier.

3.2 Standard deviation

Figure 3.2 shows the standard deviation functions for each participant per context. The
x-axis represents normalized luminance, and the y-axis represents the standard deviation
values.

The parameters estimated from the model (c which is a scaling constant and b which
is the intercept) varied considerably across participants and contexts. Most participants
showed a c > 0, indicating that noise decreased with increasing perceived intensity.
This trend was consistent across both contexts for the majority of participants. Positive
values of c, though marginal, were observed in participants ND99 and ST05 in at least
one context. Intercept values also varied widely, ranging from approximately 2.0 to
over 30.0. Some participants, such as JF00 and GC99, exhibited high baseline noise
levels, while others, including ST05 and JS00, showed comparatively low values. A full
summary of the parameters is provided in Table 3.2.

The corresponding noise functions, shown in Figure 3.2, reveal substantial variability
in shape and trend, unlike the more consistent patterns observed in the mean response
functions in Figure 3.1. In some participants (e.g., OTC99, LK99, GC99), the functions
across contexts appear nearly parallel. Others (e.g., MA97, JH02, ND99, JF00) dis-
play clear intersections between the two context-specific curves. ST05 and JS00 exhibit
overlapping starting points, with the functions gradually diverging across the stimulus
range.

Residual analyses for the standard deviation fits are reported Figure 5.1, and their
RMSE and bias values in Table 5.2. In some participants (e.g., JS00, LK99), RMSE
values were low in both contexts, indicating that the noise function captured response
variability well. Others, such as JH02 and GC99, showed high errors, suggesting a rather

15



3 Results

S
ta

nd
ar

d
 d

ev
ia

tio
n

S
ta

nd
ar

d
 d

ev
ia

tio
n

S
ta

nd
ar

d
 d

ev
ia

tio
n

Normalised luminance Normalised luminance Normalised luminance

OTC99

ND99

JF00

LK99

GC99 JS00

ST05

JH02MA97

Target in white 



Target in black

Figure 3.2: Standard deviation functions across participants and context conditions. Each
subplot shows the variability of brightness estimates as a function of normalized luminance
for one participant, separately for targets embedded in white (gray points and dashed
line) and black (black points and dashed line) grating phases. The y-axis represents the
standard deviation of reported brightness, interpreted as internal noise. Most participants
exhibit decreasing noise with increasing luminance.
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3.3 Intensity

Table 3.2: Estimated parameters of the standard deviation functions for all participants.
The table lists the fitted c (proportionality constant) and b (intercept) values from the
noise model, for the white and black context conditions. The parameter c indicates how
noise scales with the mean response, while the intercept reflects baseline noise level. Most
participants show negative c values, implying decreasing variability with increasing intensity,
contrary to the multiplicative noise assumption of the framework.

Participant c b
in white in black in white in black

OTC99 -0.074 -0.086 10.518 12.106
MA97 -0.028 -0.099 10.005 15.388
JH02 -0.072 -0.172 13.809 22.147
ND99 0.024 -0.026 7.334 11.072
LK99 -0.128 -0.154 15.693 18.312
ST05 0.027 0.098 4.400 2.0214
JF00 -0.284 -0.278 30.411 29.694
GC99 -0.105 -0.220 13.783 25.640
JS00 -0.021 -0.008 6.315 6.296

poor fit. ST05 showed a large difference between contexts, with a particularly bad fit in
the black condition. Bias values were zero in all cases due to the symmetric structure
of residuals. Overall, the noise model suggested by the framework (Equation1.5) model
worked well for some participants but did not fit all data equally. Bias values of the stan-
dard deviations were exactly zero across all participants and conditions. This outcome
reflects the symmetric structure of residuals- overestimations and underestimations oc-
curred in balanced proportion across the luminance scale. While RMSE values captured
the overall deviation between predicted and observed noise, the zero bias indicates that
the model did not introduce systematic upward or downward shifts.

3.3 Intensity

After obtaining the values from the mean response and standard deviation plots, the sen-
sitivity functions (as shown in Equation 2.4) and the intensity functions (Equation 2.6)
were computed. The results are displayed in Figure 3.3. Figure 3.4 shows all the resulting
intensity functions on a single plot.

The intensity functions can be roughly divided into two groups. Group A includes
the participants OTC99, LK99, and JF00. This group is characterized by S-like, curvy
intensity functions, and the curves for these participants cross each other around a nor-
malized luminance of 0.8. Group B consists of the rest of the participants- MA97, JH02,
ND99, ST05, GC99, and JH00. Their intensity functions are more logarithmic in ap-
pearance and do not exhibit any crossing points. These groupings reflect differences
in the relative structure of the intensity functions across contexts: some participants
show consistent vertical separation between conditions, while others display a reversal
at higher luminance levels. However, these differences must not be interpreted in terms
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Figure 3.3: The framework suggested by Zhou et al. (2024)- obtaining mean response and
standard deviation functions (top and bottom left) allows for the calculation of sensitivity
function (center). Integrating the sensitivity function yields the intensity function (right).
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Figure 3.4: Intensity (integrated sensitivity) functions for all participants. Each plot shows
intensity functions analytically derived by integrating Fisher sensitivity from individual
magnitude estimation data, separately for targets in white (gray) and black (black) grating
contexts. The x-axis shows normalized luminance, the y-axis shows relative intensity.
Integration constants used for fitting to MLCM data are not applied here, so vertical
offsets are arbitrary. Curves vary across participants, with some showing S-shapes and
crossovers, others resembling logarithmic trends.
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3 Results

of absolute perceptual magnitude. The vertical offset in the plots has no inherent mean-
ing and cannot be interpreted as such due to the ambiguity introduced by the integration
constants. Because integration always yields a function defined up to an unknown ad-
ditive term, the absolute positioning of each curve is arbitrary. Only the relative shape
and curvature of each function carry valid information about perceptual structure. Any
apparent differences in vertical alignment or crossover behavior are analytically irrele-
vant and should not be mistaken for evidence of stronger or weaker perceptual responses
across contexts.
Looking at the sensitivity functions, it is noticeable that almost all participants follow

the expected Weberian form, characterized by a monotonic decrease across the luminance
range. The only exception is participant JF00- instead of a monotonic trend, JF00’s
sensitivity function follows a U-shape, reaching a minimum around normalized luminance
of 0.4, before increasing again. This behavior resulted in a highly S-shaped intensity
function, unmatched by any other participant.
Figure 3.5 shows the perceptual scales obtained from the MLCM experiment by Vin-

cent et al. (2024). Due to the inherent ambiguity in the analytically derived intensity
functions I(s), specifically the unknown constants of integration, these MLCM scales
were used as reference data for fitting. The fitting procedure adjusted a shared pro-
portionality factor g and two independent vertical offsets (integration constants Cw and
Cb) corresponding to the black and white context conditions. This alignment does not
alter the overall shape of the functions, it only scales them uniformly and shifts them
vertically, resolving the ambiguity introduced by the indefinite integral.
For each participant, the values of g and the integration constants were optimized

to minimize the RMSE between the predicted intensity and the corresponding MLCM
scale. This step is necessary because the MLCM-derived perceptual scales differ across
observers- there is no single averaged scale-requiring separate fits for each pairing. In
total, 72 fits were computed, covering all combinations of ME participants, contexts,
and MLCM observers. RMSE values for all fits are reported in Table 5.3.
For improved visualization, the RMSE values are presented as a heatmap (Figure 3.6).

The heatmap allows detailed comparison of fit quality across all participants and ob-
servers, highlighting patterns in the consistency of the fits. Inspection of the heatmap
reveals systematic differences in fit quality across participants. Participants ND99 (av-
erage RMSE = 5.0%), MA97 (5.9%), LK99 (6.2%), and JS00 (6.3%) achieved the best
fits, indicating strong correspondence between their intensity functions and the MLCM-
derived perceptual scales. Participants OTC99 (6.9%) and ST05 (6.9%) showed mod-
erate fit quality. In contrast, participants JF00 (7.9%), JH02 (8.0%), and GC99 (8.8%)
exhibited the highest average RMSE values, suggesting greater deviations between the
two measures for these individuals.
The average RMSE across all fits is 0.069, corresponding to an average deviation of

6.9%. The median RMSE is 0.065, which corresponds to deviation of 6.5%. The best fit
achieved an RMSE of 0.036 (3.6% deviation), while the worst fit had an RMSE of 0.132
(13.2% deviation). It is noteworthy that vast majority of RMSE values (66 out of 72
≈ 91%) fall below the 10% deviation mark.
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3.3 Intensity

Figure 3.5: Perceptual scales obtained via MLCM from Vincent et al. (2024). Each plot
shows the perceptual scale values derived from Maximum Likelihood Conjoint Measure-
ment (MLCM) for one observer. The x-axis represents physical luminance in cd/m2, while
the y-axis shows the corresponding perceptual scale, normalized between 0 and 1. Black
and gray points indicate targets embedded in black and white grating contexts, respec-
tively. Error bars denote 95% confidence intervals. Most observers exhibit a consistent
separation between contexts, with targets in black appearing perceptually brighter than
those in white at equal luminance levels.
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3 Results

Figure 3.6: Heatmap of root mean squared errors (RMSE) between ME-derived and
MLCM-derived intensity functions. Each cell represents the RMSE between the
intensity function of an ME participant and the perceptual scale of an MLCM participant.
Darker shade of a cell indicates lower error, reflecting stronger alignment and greater simi-
larity in perceptual scaling across methods. Rows correspond to ME participants, columns
to MLCM participants. The average RMSE across all comparisons is 0.069, with most
values falling below 0.10. Red-outlined cells mark the lowest RMSE observed for each
ME participant. Notably, many ME participants’ intensity functions aligned best with the
perceptual scale of observer LS from Vincent et al. (2024), suggesting that LS’s scaling
closely reflects the average structure observed across the ME data.
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Target in white 



Target in black

Figure 3.7: Best fits per participant. Each subplot shows the intensity function (dotted lines)
fitted to a perceptual scale from Vincent et al. (2024). Points represent the MLCM data,
while the annotated values indicate the fitted scaling factor g and integration constants
Cw (target on white) and Cb (target on black).
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4 Discussion

This thesis tested whether the unified framework suggested by Zhou et al. (2024), linking
perceived magnitude and discriminability via a common internal representation, gener-
alizes to context-dependent visual illusions. Specifically, the framework was applied to
White’s illusion, where target patches with identical luminances perceived to be either
brighter or darker, according to their spatial context. Perceived brightness ratings were
collected through a magnitude estimation task across two conditions, targets embedded
in black or white gratings, over a range of 18 different luminance levels. From these
responses, mean response and standard deviation functions were derived, which yielded
Fisher sensitivity, and upon integration, the intensity function. The resulted intensity
functions were then fitted to the MLCM data from Vincent et al. (2024), resulting 72
different fits. Then the goodness of the fits was measured through calculating their root
mean squared errors (RMSE).

The results showed that while the ME and MLCM experiment by Vincent et al. (2024)
used different participants, the fitted intensity function manage to produce rather low
RMSE scores for majority of the participants, with average of 6.9% deviation, which sug-
gests the framework is robust enough to capture essential features of context-dependent
visual phenomena.

4.1 Reversal of contextual modulation across luminance

A key empirical finding was the reversal of contextual modulation across the luminance
scale, as seen in Figure 3.1. At low luminance levels, targets embedded in black grating
appeared brighter than targets embedded in white grating, consistent with the expected
assimilation effect of White’s illusion. However, the assimilation effect reversed and
turned into contrast effect around normalized luminance values between 0.6 and 0.8 for
most participants, with some (such as LK99 and JS00) exhibiting an earlier reversal.
This suggests that contextual modulation is not constant across luminance levels but
depends on absolute stimulus intensity.

A possible explanation can be found in Betz, Shapley, Wichmann, and Maertens
(2015). The paper demonstrated that White’s illusion is primarily driven by the con-
trast at the orthogonal edges- the immediate boundaries between the target and its
surrounding gratings. Strong contrast at these edges tends to reduce the perceived
brightness of the target (contrast effect), while weak contrast favors assimilation- this is
demonstrated in Figure 4.1. Targets on black grating experienced a strong luminance
step at their boundary, promoting contrast-related suppression of their perceived bright-
ness. Targets on white grating however, had much smaller luminance differences with
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Figure 4.1: Orthogonal edges drive assimilation effects in White’s illusion. Edges orthogonal
to the grating (marked in red) have a strong impact on perceived brightness, as proposed
by Betz et al. (2015), while edges parallel to the grating (marked in blue) exert minimal
to no influence on the assimilation effect.

their surround. As a result, the usual direction of White’s illusion reversed: targets on
black grating perceived as darker than targets on white grating. These findings suggest
that at high luminances, it is not absolute luminance alone, but the balance of local
contrast across orthogonal edges, that determines whether contextual modulation fa-
vors assimilation or contrast effects. Figure 4.2, which was taken directly from the ME
experiment, exemplifies this reversal.

4.2 Deviation from multiplicative noise assumption

The framework of Zhou et al. (2024) assumes that internal noise scales proportionally
with the mean response- i.e., multiplicative noise. This implies a constant coefficient
of variation across stimulus levels. However, this assumption was not supported by the
collected data. For nearly all participants (except ST05 and ND99), standard deviation
decreased with increasing luminance. Even for these two exceptions, the observed in-
crease was minimal- both exhibited nearly flat noise profiles. This pattern contradicts
the framework’s core prediction that variability should grow with signal strength.

One explanation may lie in the structure of the magnitude estimation task. All lu-
minance levels were repeated across five blocks in both contexts. High-luminance tar-
gets, being more visually salient, may have been more easily recalled or anchored to
prior responses, thus reducing variability around extreme target luminances. In this
view, standard deviation of mean responses reflects a combination of internal noise and
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4.2 Deviation from multiplicative noise assumption

Figure 4.2: Example of reversal of assimilation effect for high luminance targets. The stim-
uli include target patches of identical, very high luminance, leading to a reversal of the
typical assimilation pattern observed at lower luminances. Instead of the target appearing
brighter when embedded in black grating (on the right), all the participants perceived the
target embedded in a white grating (on the left) to be brighter, illustrating the luminance-
dependent nature of contextual modulation.
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task-specific artifacts such as anchoring, rather than noise in a strict perceptual sense.
This interpretation assumes that standard deviation approximates internal noise, a key
premise of the framework, but one that may not always hold under magnitude estimation
tasks involving context effects.
Alternatively, the failure of the multiplicative noise model may reflect a deeper lim-

itation of the framework itself when applied to context-dependent phenomena such as
assimilation. In illusions like White’s, the perceived brightness is shaped by both the sur-
rounding context of the target and the physical brightness of the target itself (seen in the
reversal of the assimilation effect in higher target luminances), leading to modulations
that cannot be attributed to stimulus strength alone. These contextual dependencies in-
troduce additional complexity into the mean responses that may also influence response
variability, which the framework by Zhou et al. (2024) interprets as noise. In this set-
ting, internal noise no longer scales predictably with signal strength, as assumed by the
framework. Instead, the interaction between target and surround introduces latent vari-
ables that potentially influences the relationship between mean response and standard
deviation, violating the framework’s core premise of proportional noise tied directly to
the stimulus.
To explore this, a LOWESS analysis was applied to the standard deviation data (Fig-

ure 4.3). Unlike the global fit used in Equation 1.5, LOWESS is a non-parametric
method that locally fits smooth trends without assuming any particular form. This re-
vealed structures not captured by the parametric model. For several participants (e.g.,
MA97, JH02, LK99), standard deviation followed an inverted U-shape: low at luminance
extremes and peaking around the mid-range. Others, such as ST05 and JF00, showed
profiles more consistent with the original standard deviation fit, while the rest of the par-
ticipants exhibited mixed patterns across contexts. These findings suggest that internal
noise may follow non-monotonic structures in contextual illusions, possibly reflecting a
mixture of perceptual and task-related factors. While the framework treats standard de-
viation as a proxy for internal noise, the current data highlight that this approximation
is sensitive to experimental context and should be interpreted with caution.
In most participants, the LOWESS analysis revealed an inverted U-shaped noise pro-

file, with elevated variability in the mid-range that was not captured by the fitted model.
This implies that mid-range variability was systematically underestimated, resulting in
inflated sensitivity estimates in that region. This causes the integrated intensity function
to rise too steeply around mid-luminance, potentially exaggerating perceptual differences
and shifting the apparent strength of contextual modulation. Yet, due to the flexibility
of the integration step, these distortions were absorbed into the fit, leaving the direction
and magnitude of bias difficult to recover from the final result.

4.3 Crispening-like patterns in noise- isolated effect or
anchoring?

The vast majority of participants exhibited the expected sensitivity trend predicted by
Weber’s law. A single outlier was participant JF00, whose sensitivity function followed
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Target in white 



Target in black

Figure 4.3: LOWESS fits to standard deviation functions across participants. Each curve
shows the smoothed trend of response variability as a function of luminance, separately for
black and white context conditions. Many participants exhibit an inverted U-shape, with
lower variability at luminance extremes and a peak in the mid-range. This trend suggests
reduced internal noise when target luminance matches the background.
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Figure 4.4: Sensitivity functions for participant JF00 alignment with crispening effect. The
black and gray curves show the sensitivity for targets embedded in black and white grating
contexts, respectively. Unlike the typical monotonic decrease observed in most participants,
JF00 exhibits a U-shaped profile with a minimum around mid-luminance and elevated
sensitivity at both low and high luminance levels. This unusual pattern aligns with the
crispening effect, where discriminability peaks when the target’s luminance closely matches
the background, and falls off in intermediate regions.

a U-shaped profile, reaching its minimum around a normalized luminance of 0.4 and
rising again thereafter (see Figure 4.4). This atypical pattern recalls the crispening
effect described by Whittle (1992), which refers to enhanced sensitivity for brightness
differences when a target’s luminance closely matches its background. Whittle showed
that small deviations from the background luminance are perceived more acutely than
larger deviations, which become less discriminable. In JF00’s case, sensitivity was highest
at luminance levels where the target closely resembled the background grating- a very
dark patch embedded in black grating, and a very bright patch embedded in white
grating, dropping in the mid-range where contrast with the surround was less defined.

Interestingly, the inverted U-shaped noise profile found in the LOWESS analysis aligns
with this interpretation. Across majority of participants, standard deviation was lower
at the luminance extremes and peaked at intermediate levels, suggesting that internal
noise might be minimized when target and surround luminance are similar.

It is important to note that the LOWESS curves were not used solely as a non-
parametric smoothing tool to reveal structure that may be too subtle to detect by eye
in the raw data. LOWESS makes no assumptions about functional form and should not
be interpreted as an analytical fit. Instead, it offers a qualitative view of trends in the
data- such as the inverted U-shape.

However, since only one participant showed a sensitivity function that aligns with
crispening effect(JF00), it is rather unlikely to assume that crispening is the underlying
explanation for the group-wide noise pattern. A more plausible account is anchoring:
participants were repeatedly exposed to the same luminance values, and extreme values
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are easier to recognize and recall, leading to more consistent responses. In contrast,
mid-range luminances are harder to identify precisely, resulting in greater response vari-
ability. Therefore, while the LOWESS noise trend matches the structure predicted by the
crispening effect, it more likely reflects task-induced anchoring than genuine perceptual
enhancement.

4.4 Alignment between ME-derived and MLCM-derived
intensity

The comparison between intensity functions derived from the ME experiment and per-
ceptual scales obtained through MLCM showed strong overall consistency. The average
RMSE across all fits was 6.9%, with a median of 6.5%. In 91% of cases (66 out of 72),
the deviation remained below 10%. Given that the ME and MLCM data were collected
from different observers, this level of correspondence suggests a high degree of alignment.

This apparent success may be partly explained by the smoothing effect of the integra-
tion step: it reduces the influence of local deviations in sensitivity, making the resulting
intensity functions more robust to mismatches in the noise model. In other words, even
if the noise functions deviate from theoretical assumptions, a well-fitted mean response
can still yield integrated intensity curves that resemble perceptual data.

However, these results must be interpreted with caution. Both the integration con-
stants (Cw, Cb) and the scaling factor (g), were treated as free parameters and adjusted
to minimize RMSE for each fit. These parameters cannot be derived directly from the
ME data alone due to inherent mathematical ambiguities in the integration step. The
6.9% average error therefore reflects a best-case fit under these constraints. While this
does not show that the framework independently reproduces the MLCM scales, it does
indicate that, once appropriately scaled and shifted, it can approximate them closely.
This suggests a potential for high alignment, even under contextual modulation.

Nonetheless, the alignment remains noteworthy. Despite known biases in magnitude
estimation such as anchoring, and despite the deviations observed in the noise fits, the
resulting intensity functions still captured key features of the perceptual structure. This
includes the overall shape of the curves and the direction of contextual modulation. The
vertical separation between conditions, however, was directly influenced by the fitted
integration constants and cannot be considered an independent result. Still, the findings
offer partial support for the idea that perceived magnitude and sensitivity reflect a shared
internal representation, even in context-dependent cases like White’s illusion.

RMSE values also varied across participants, suggesting individual differences in how
well the framework generalizes. ND99, MA97, LK99, and JS00 had the lowest RM-
SEs on average (5.0%–6.3%), while JF00, JH02, and GC99 showed the highest average
deviations (7.9%–8.8%).
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4.5 Limitations

4.5 Limitations

The framework suggested by Zhou et al. (2024) relies on a few mathematical assumptions.
It claims that noise grows proportionally with the mean response- a logical assumption,
considering that no stimulus should produce near-zero noise in the internal representation
of an observer. However, this assumption was contradicted by the collected noise data,
where noise decreased on average while perceived intensity grew.

In addition, although the integration process introduces an unknown constant C (as
shown in Equation 2.6), this constant cannot be determined directly from the ME data.
Instead, C was estimated by fitting the integrated sensitivity functions to the perceptual
scales obtained from MLCM. This fitting provides a value of C that optimizes the corre-
spondence between the analytically derived intensity functions and observed perceptual
scales, but it may not reflect the true internal mapping. The ability to flexibly fit C in
the current analysis allowed better alignment with such context-dependent differences,
but it does not resolve the fundamental ambiguity introduced by the integration step.

A further limitation is that the ME and MLCM measurements were obtained from
different participant groups. Since perceptual encoding can vary across individuals, com-
parisons between the two methods inevitably introduce ambiguity. A more conclusive
test would require collecting ME and MLCM data from the same observers, allowing a
direct within-subject comparison of the derived intensity functions.

Perceptual calibration likely occurred during the initial trials, as participants familiar-
ized themselves with the task and internalized the stimulus scale. This may have led to
imprecise or inconsistent responses at the beginning of the experiment, introducing noise
unrelated to the perceptual process of interest. Discarding the first trial or incorporating
a practice phase could help reduce this type of variability.

A known issue of the ME procedure is anchoring. Participants may consciously or un-
consciously base their ratings on previous responses, rather than evaluating each stimulus
independently, also known as anchoring effect. One strategy to minimize anchoring ef-
fects is to spread trials over multiple days, allowing participants to forget prior anchors
and rely more on their immediate perceptual judgments. Another approach is to vary
the stimulus set across blocks: instead of repeating the same 18 luminance levels across
all blocks, multiple versions of the experiment could be created with differently spaced
luminance values. This would reduce the ability to memorize specific stimulus-response
mappings and encourage genuine estimation on each trial. Additionally, the participant
sample was not balanced with respect to gender. Notably, the two female participants
were the only ones to exhibit positive slopes in their standard deviation functions, sug-
gesting a possible demographic influence on internal noise properties. A more balanced
participant pool would be necessary to systematically investigate such effects.

4.6 Conclusion

This thesis tested whether the unified framework proposed by Zhou et al. (2024), which
links perceived magnitude and discriminability through a shared internal representation,
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extends to context-dependent phenomena like White’s illusion. In this framework, per-
ceived magnitude corresponds to the mean internal response, while sensitivity is defined
as its derivative divided by internal noise.
Magnitude estimation and standard deviation data were used to compute sensitivity

functions, which then were integrated in order to achieve intensity functions. The in-
tensity functions were then fitted to perceptual scales obtained via MLCM by Vincent
et al. (2024), using the unknown integration constant and a scaling constant as free
parameters. Despite relying on different participant groups, the alignment between the
two was strong: 91% of the 72 fits had an RMSE below 10%, with a mean deviation of
6.9%. This level of consistency suggests that the framework can approximate perceptual
structure even in context effects like White’s illusion.
However, a key assumption of the model- that internal noise scales proportionally

with the mean response, was not supported by the data. Parametric fits often showed
decreasing noise with increasing luminance, and LOWESS smoothing revealed inverted
U-shaped noise profiles in many participants. While this resembles the crispening effect,
it is more likely explained by anchoring: extreme luminance values are easier to recognize
and recall, leading to more stable responses at the luminance extremes.
This conflict can be reconciled by the smoothing effect of the integration step (Equa-

tion 2.6). Although the fitted noise functions systematically deviated from the frame-
work’s multiplicative assumption, showing a mixed pattern of multiplicative and additive
components, the resulting intensity functions still closely matched the MLCM perceptual
scales. This suggests that accurate modeling of the mean response is sufficient to recover
the global shape of perceived intensity, even if the local noise structure is inaccurate. In
this sense, the framework demonstrates robustness: it can capture large-scale perceptual
trends even when its assumptions about noise do not fully hold.
Future work should test the framework using ME and MLCM data from the same

participant pool. This would eliminate between-subject variability and allow a direct
comparison of intensity functions and perceptual scales. Future studies should also
minimize anchoring effects to determine whether the inverted U-shape in noise reflects
a systematic property of how brightness is encoded under contextual modulation or
whether it is a byproduct of the task design.
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5 Appendix

5.1 Driving the integrated sensitivity functions

Take the integral:

∫
akxa−1

ckxa + b
dx (5.1)

This integral can be solved by substitution. Let:

u = ckxa + b (5.2)

Then the derivative of u with respect to x is

du

dx
= ackxa−1 (5.3)

Solving for dx:

dx =
1

ackxa−1
du (5.4)

Substituting into the original integral:

∫
akxa−1

u
· 1

ackxa−1
du =

∫
1

cu
du (5.5)

=
1

c
log(u) + C (5.6)

Substituting back for u, the final solution:

∫
akxa−1

ckxa + b
dx =

1

c
log(α(ckxa + b)) + C (5.7)
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5.2 Mean response RMSE and bias

Table 5.1: RMSE and Bias values for all participants across context conditions. The table
records root mean squared error (RMSE) and perceptual bias for targets embedded in white
and black grating phases, enabling assessment of model fit and contextual modulation for
each participant.

Participant RMSE Bias
in white in black in white in black

OTC99 4.309 3.291 0.164 0.055
MA97 3.921 6.056 -0.233 -0.184
JH02 5.285 5.495 0.268 0.098
ND99 3.253 3.856 0.102 0.091
LK99 4.297 4.424 0.026 -0.084
ST05 4.070 5.906 0.052 -0.018
JF00 3.959 5.762 -0.081 -0.084
GC99 5.211 4.856 -0.222 -0.057
JS00 2.696 4.588 0.233 0.222

5.3 Standard deviation RMSE and bias

Table 5.2: RMSE and Bias values for all participants across context conditions. The table
records root mean squared error (RMSE) and perceptual bias for targets embedded in white
and black grating phases, enabling assessment of model fit and contextual modulation for
each participant.

Participant RMSE Bias
in white in black in white in black

OTC99 3.473 2.162 0.00 0.00
MA97 4.844 4.890 0.00 0.00
JH02 6.258 6.323 0.00 0.00
ND99 4.949 4.918 0.00 0.00
LK99 3.259 2.916 0.00 0.00
ST05 3.134 7.942 0.00 0.00
JF00 2.996 4.328 0.00 0.00
GC99 5.341 4.135 0.00 0.00
JS00 2.719 1.966 0.00 0.00

5.4 Mean response and standard deviation residuals plots
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5.4 Mean response and standard deviation residuals plots

Target in white 



Target in black
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Target in white 



Target in black

Figure 5.1: Residuals of model fits for mean response and standard deviation functions
across luminance levels and context conditions. RMSE values varied between par-
ticipants, with some showing larger errors in one context, but bias remained low through-
out. For standard deviation fits, bias was zero in all cases, indicating symmetric residuals.
Model fit quality differed across participants, with some showing good alignment and oth-
ers higher residuals.
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5.5 Detailed fit results- best to worst

5.5 Detailed fit results- best to worst

ME participant MLCM participant g C0 C1 RMSE

MA97 LS 0.076 6.262 2.326 0.036
ND99 JV 0.084 7.603 -6.685 0.037
ND99 GA 0.098 8.971 -7.788 0.037
ND99 AA 0.104 9.365 -8.438 0.038
LK99 LS 0.078 1.718 1.709 0.039
JS00 LS 0.050 4.443 10.984 0.039
ND99 JS 0.109 9.962 -8.889 0.042
ST05 SZ 0.056 -3.107 -0.345 0.044
ND99 LS 0.086 7.949 -6.806 0.047
OTC99 LS 0.054 1.804 1.841 0.048
ND99 MM 0.077 7.087 -5.961 0.049
MA97 JV 0.073 5.865 2.178 0.050
MA97 MM 0.067 5.537 2.170 0.050
JF00 JV 0.083 0.978 1.175 0.050
LK99 MM 0.069 1.522 1.626 0.050
ST05 GA 0.077 -4.482 -0.924 0.052
ST05 LS 0.068 -3.927 -0.760 0.053
MA97 JS 0.095 7.728 2.671 0.054
LK99 JV 0.075 1.514 1.586 0.054
JF00 MM 0.076 1.021 1.240 0.055
OTC99 MM 0.048 1.599 1.744 0.055
MA97 GA 0.085 6.941 2.536 0.055
OTC99 JV 0.052 1.601 1.717 0.056
JH02 LS 0.091 3.452 1.980 0.056
JS00 MM 0.044 3.911 9.778 0.057
JS00 GA 0.056 4.919 12.195 0.057
LK99 JS 0.098 2.035 1.898 0.057
MA97 AA 0.090 7.207 2.526 0.059
JS00 JS 0.063 5.443 13.503 0.060
JS00 JV 0.048 4.092 10.381 0.061
ST05 PE 0.089 -5.265 -1.184 0.062
GC99 LS 0.076 1.897 1.398 0.062
LK99 GA 0.087 1.873 1.845 0.063
JF00 AA 0.102 1.166 1.283 0.063
LK99 AA 0.092 1.829 1.794 0.064
JH02 MM 0.081 3.048 1.862 0.065
OTC99 JS 0.067 2.145 2.066 0.065
JF00 LS 0.084 1.142 1.263 0.065
OTC99 AA 0.064 1.938 1.957 0.066
JS00 SZ 0.039 3.620 8.934 0.067
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JH02 JV 0.087 3.166 1.843 0.068
GC99 SZ 0.060 1.633 1.405 0.069
ND99 PE 0.112 10.206 -9.014 0.070
JS00 AA 0.059 5.024 12.686 0.071
MA97 SZ 0.059 5.007 2.114 0.071
ST05 MM 0.059 -3.414 -0.540 0.072
OTC99 GA 0.060 1.966 1.988 0.072
LK99 SZ 0.061 1.467 1.633 0.072
GC99 MM 0.066 1.662 1.341 0.076
JF00 JS 0.107 1.320 1.346 0.077
ST05 JS 0.085 -5.009 -1.186 0.079
OTC99 SZ 0.042 1.526 1.727 0.080
JH02 JS 0.114 4.197 2.234 0.080
ND99 SZ 0.066 6.265 -4.942 0.080
JH02 AA 0.108 3.873 2.113 0.081
JH02 SZ 0.071 2.806 1.839 0.081
JH02 GA 0.101 3.774 2.135 0.084
ST05 JV 0.063 -3.755 -0.734 0.086
GC99 GA 0.084 2.060 1.493 0.089
GC99 JV 0.071 1.650 1.270 0.089
JS00 PE 0.064 5.555 13.815 0.089
JF00 GA 0.093 1.229 1.344 0.091
MA97 PE 0.096 7.831 2.784 0.093
GC99 JS 0.094 2.241 1.499 0.094
JF00 SZ 0.063 1.001 1.267 0.098
LK99 PE 0.099 2.072 1.996 0.100
ST05 AA 0.078 -4.683 -1.073 0.105
GC99 AA 0.087 2.001 1.405 0.107
OTC99 PE 0.068 2.174 2.157 0.110
GC99 PE 0.095 2.293 1.603 0.119
JH02 PE 0.114 4.218 2.321 0.121
JF00 PE 0.105 1.332 1.421 0.132
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